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ABSTRACT

Boltzmann's equation, with a collision term differing somewhat from
the usual and taking long-range interactions into account, is shown to be a
correct basis for an analysis of physical phenomena in (ideal) ionised
gases. All macroscopic quantities, including the electromagnetic field,
are identified with statistical averages of the corresponding microscopic
quentities .

We then consider the inherent tendency of the system towards sta-
tistical equilibrium, i.e. minimum or zero entropy production. A new
proof is developed for the H-theorem, valid when the intermolecular forces
are mainly of the long-range type. The characteristic times for the diffe-
rent relaxation processes are computed, and the equilibrium conditions for
a rotating gas in external and internal force fields are deduced by exact
methods.

The general theory of transport phenomena is then considered. The
transport equations are derived, and it is shown that to get a complete set
of equations it is necessary to postulate ''phenomenological relations"
between ''fluxes'’ and '"forces'', these being defined in accordance with the
conditions of equlibrium.

Making specific assumptions about the properties of symmetry of the
gas when a magnetic field is present, we derive the proper form of the co-
efficient tensors with the aid of the theory of Cartesian tensors. The usual
assumption that the tensors are isotropic is not justified.

Some important features of irreversible processes are discussed. We
then proceed to solve Boltzmann's equation by successive approximations.
The result thus obtained from microscopic theory are in complete accord
with the results obtained earlier by macroscopic reasoning.
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INTRODUCTION

The purpose of the present paper is to give a presentation of certain
physical problems and mathematical methods encountered in that branch of
physics which deals with ionized gases in electromagnetic fields.

Our aim is the description of non-equilibrium states of the system,
that is phenomena of relaxation and transport. Considering the macrosco-
pic behavior of the system to be identical with the averaged microscopic
behavior, we shall build our theory on the most general microscopic basis.
This is not, as almost invariably presupposed, the Boltzmann equation, but
the more fundamental Liouville equation. From the latter equation one may,
however, under certain conditions deduce the Boltzmann equation.

The microscopic description permits us to draw a number of interesting
conclusions concerning the behavior of the ionized gas. In addition it per-
mits an exact deduction of the macroscopic transport equations.

Special attention must be given to the inherent tendency of the system
towards statistical equilibrium. While the intermolecular mechanism of
interaction cannot be expected to have any influence upon the form of the
final equilibrium conditions, it is essential for the rate of approach to this
state. When computing the relaxation times of the system, full account
must be taken of the long-range intermolecular forces. Such forces are
predominant in ionized gases, a fact that has not always been given the de-
served attention.

The form of the equilibrium conditions is essential to the definition of
the "fluxes' and ''forces' that are linearly connected in the phenomeno-
logical relations. As we shall see, the existence of these relations is ne-
cessary in order to get a complete set of equations, . This is, consequently,
in general only possible for states sufficiently near\hquilibrium. The form
of the equilibrium conditions has most often been taken over from macro-
scopic, thermodynamical theory. Instead we shall deduce, from our
microscopic equations, equilibrium conditions that are somewhat more
general than the usual ones.

Many authors, when dealing with ionized gases, simply assume the
validity of the usual macroscopic equations of classical fluid dynamics,
and forget that an isotropic medium has been presupposed. It is, however,
an important fact that a magnetic field will introduce an anisotropy in a
medium composed of ionized molecules, giving it a rotational symmetry.

There are thus at least four frequent defects in earlier pre.enfationl
of the theory of ionized gases, namely:

a) The founding of the theories on Boltzmann's equation, which should
be replaced by Liouville's equation.

b) The failure to take into account the long-range intermolecular
forces.

c) The too special equilibrium conditions assumed.

d) The failure to take into account the anisotropy of the medium
introduced by a magnetic field.

These are considered to constitute a sufficient reason to give this
presentation of the theory.

Our aim will then be to remove these defects and build up a consistent
theory from a very general microscopic base.



APPROXIMATIONS

The only approximations to be made from the outset are the following:
a) No quantum-mechanical effects are considered.

b) Relativistic effects are neglected, and the correlation region for the
molecules are assumed to be sufficiently small so that the inter-
actions inside this domain may be considered instantanous.

Other approximations to be made in the course of development will be
explicitly stated at the appropriate place in the text. They are in main:

c) For the greater part the treatment will be restricted to ""ideal gases",
the mean kinetic energy being much greater than the electrostatic
energy of interaction.

d) The state of the system will usually be supposed to be near equili-
brium. That is, the deviation in the macroscopic quantities from
the equilibrium conditions of Section 16 are small. This validates
a first-order theory.

e) The effects of the surroundings of the system will usually be repre-
sented by external macroscopic force fields.



NOTATION

Our notation mainly follows that of Chapman and Cowling [4]. The
vector notation of Gibbs is adopted. Scalars, vectors and tensors of the

second (and occasionally of higher) order are denoted by the following re-
presentative symbols:

s , VvV, T

Simple scalar product is denoted by adot, e.g., u.v or
v: U . Repeated scalar product is denoted by more than one dot, e.g.

U : V . Instead of the usual symbol %7, the symbol .-d-‘? is adopted for

the del or nabla operator, where r is the position vector.

I is the unit (second order) tensor with components aik (Kronecker
delta).

The trace or divergence of a second order tensor U is defi-
ned as

Uy = U I (summation over i) .

0
From any tensor U a non-divergent tensor, denotedby VW,
may be derived:

0 1
U=11- 3 Uii I.
If the elements of a tensor U are: Uik a new tensor U, the con-

jugate to U, is defined having the elements U, =

ik * Uki -

Any tensor U 'may be written as the sumof a symmetrical and
an antisymmetrical tensor:

U=HU+ U)+i(U- U) .

The other symbols used will be defined in the course of development.



PART 1. GENERAL THEORY
1. INTRODUCTORY REMARKS

When we undertake any given physical description, the system we wish
to describe must be set off from the surrounding mass of all physical objects,
i.e. the environment. In the following, our system is a certain quantity of
gas, and the environment may consist of othet gases, fluids or solid forms "’
of matter. Fields of force will not be considered to be independent objects,
but rather as being attributes of material systems, existing because of the
internal structure of the latter or their motion.

A system may be divided into an arbitrary number of component systems,
but the partition cannot, or need not, be indefinitely continued. We eventually
arrive at a usually very large number of elementary systems, where we no
longer need to know the internal structure of each system. We are only inter-
ested in the externally directed effect of the elementary system on its environ-
ment. From this point of view the interior of an elementary system does not
belong to the proper system.

We thus define both an outer and an inner limit to our system. In our
case the elementary systems are molecules, atoms and electrons, all of
them possessing a certain electric charge and other molecular properties.

The state of the system is described by certain coordinates of state,
the choice of which depends on the type of description we elect for our
system. We are often content with a macroscopic description, and the co-
ordinates then are quantities that refer to the system as a whole, i.e. pres-
sure, temperature, volume, etc.

But more often than not such a description is too coarse, and we must
apply a microscopic description. Here the macroscopic phenomena consti-
ture nothing but the sum of a multitude of molecular effects.

The most detailed description possible of a system is made by giving
the states of all the elementary systems. When the system is a gas, this
means that we give the total number of molecular coordinates of state, such
as position and velocity, for each molecule at a given time. Because of the
large number of elementary systems in the proper system, we must usually
resort to a statistical description.

If we are to describe the development of a system, we must know how
the parts of the system interact with each other and with the environment.
We must, in other words, know:

a) The inwardly directed effects of the environment on the system
(on the parts of the system, the elementary system).

b) The outwardly directed effects of the elementary systems on
their environments (i.e. the other elementary systems).

Concerning the latter effects we rnust postulate that the internal struc-
ture of the elementary systems is unchangeable and independent of the en-
vironment. If this is not the case, we must perform a further subdivision
into new elementary systems. The externally directed effect of the elemen-
tary systems may then be represented by constant proper fields of force of
different types, and can be considered as a molecular property. From a
macroscopic point of view this will take the form of different types of fields
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of force - electrical, gravitational, etc. Other forces are of the magnetic
type, arising as a result of the electric transport of charge by the mole-
cules.

We may expect that the environment can be divided into component and
elementary fields, in the same way as for the proper systemm. From this
point of view the effects a) of the environment on the system are the sums
of all the separate effects of the elementary systems in the environment.
These effects must be ascribed to the proper fields of the elementary systems
and the forces arising from their motion.

The whole problem of interactions thus reduces to that of mutual effects
between elementary systems. These we must know if we are to make an
exact description of the development of a system. This really means that
we extend the system so as to include part of the environment. The more
exact we wish our description to be, the more we must extend the limits of
our system, inwards and outwards.

By making certain assumptions, however, we can often describe the
physical processes of a system without detailed knowledge of the environ-
ment. We may, for instance, assume that the system is sufficiently far
removed from all environmental influences, so that interaction may be
neglected. If this is not the case, we may assume that the effects can be
represented by constant or time -dependent macroscopic fields of force, by
various limiting conditions, and so on.

We now proceed to the treatment of gases, particularly ionized gases.

2. MICROSCOPIC AND STATISTICAL DESCRIPTION.
BOLTZMANN'S EQUATION

Suppose that our system - a certain quantity of gas - consists of several
component systems or gases, which we denote by the indices a = 1,2, ...
Each component system is in turn composed of a large number of identical
elementary systems or gas molecules. We assume that the internal struc-
ture of the elementary systems is constant, and that each molecule is sur-
rounded by a constant proper field of forces. If the molecules have the
electric charge e, , the potential of this force will be ec/r .

From a microscopic point of view, the state of the system is given when
the position »r ak and the velocity ¢ ak of all molecules are given (k =

1,2, ... , vq, where vg is the total number of molecules of the type a ).
Each molecule may thus be represented by a point in a six-dimensional
position-velocity space, the (r,c)-space. The microscopic density of these
points in (r,e¢)-space is given by [l] ,

B (ret) = Ta(ror ) 8(e-eg, (), eslz ..., (LD

where 8 is Dirac's delta-function.

The microscopic density in position space is

Ng(rt) = IFa (r,0,t)do = i&(r-rak(t)). (1.2)

Now having defined the microscopic state of our system, we are inter-
ested in finding equations that describe the development of state with time.
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The functions F; must satisfy the equation of continuity (Liouville's
equation),

oF, ok

where F_. (r,e,t) is the total microscopic field of force. This is com-
posed of ﬁ:e external field P , representing the effect of the environ-
ment on the system, and anotger force term which represents the etfects of
all the molecular fields of force on a particle a in (r,e),

Form = Foo +‘!5: lf!' ap (r,e,r k(t) c k(t')) (1.4)

Here Fgg5 is the contribution to the field of force at the point (r,c) from a

particle B with the coordinates (r ., (t'), ¢ ., (t')). The latter term can
Bk pk

also be written as

z lf Irap("c"""") 6(r'-rbk)6(c' -c'pk)dr'dc =

= pz[rap(r,c.r‘.c') FB (r',0't')dr de' . (1.5)

The integration extends over all points r' with the exception of the point
r' = r, which must be excluded as we cannot include the contribution from
the proper field of the particle @ in r.

From this microscopic description we can now proceed to a statistical
description. In so doing we regard all quantities as being functions of an
initial configuration of particle coordinates (r,,(0), ¢, (0) k=12, ...,
Vg, @ =1,2...), and average over a certau‘f set of auch configurationl

We denote the averaged quantities by ¢( ) .
The mean quantity <F¢> is identical to the familiar distribution function

f(r.et) = CED = (F, (r.et)) . (1.6)

We may interpret fo d¥ d¢ as the probable number of particles @ in the
element of volume dr de in (r, ¢)-space.

In a similar way we can define the distribution function of the second
order,

fap(r.c.r'.e'.t,t') F, Fp> » %P

(Fc Fa> -8(r-r')é(c-e¢') <F¢>, a= g

(1.7)

faa(r.cir' 0, t,t')

Here fapdr dec dr'de’' is proportional to the probability of finding a molecule

@ in the element dr de¢ at the point (r,c) simultaneously with the presence

of a molecule of the type B in the element dr'dc' at the point (r', ¢') at the

=t-Jlr-r
c

retarded time t' (We assume that all effects of force propa-

gate at the velocity of light c.)

The definitions of the functions of higher order are closely analogous with
expressions (1.6) and (1.7).
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In the same way we can define statistical mean values of all quantities
that depend on the particle coordinates ?ak and ¢ ak If, for instance,
we average the equation (1.3) we get

of df dfu 0

_“+°._“+ra°.1_°+_.zj‘p

- s 56 " L 1%y fy,p dr'de’ = 0. (1.8)

In Section 8 we shall show that the last term of this equation partly gives
origin to a correction to the external macroscopic field of force F co ' and

d 1
partly to the so-called "collision term" -S.% Equation (1.8) may there-
fore be brought onto the form
dfa dfa dfa dcfa
W+ C'Tx—'.' Fa'w= ot » a=l,2,... (1-9)

This is Boltamann's equation, which is the fundamental point of departure of
almost all exact treatments of the physical conditions in gases.

3. THE ELECTROMAGNETIC FIELD

The microscopic, electric and magnetic fields are composed of an ex-
ternal and an internal part,

E (rt) = E (r,t)+ L2 E, (""pk'°'pk),
Pk (1.10)
B (rt) = B (rt) + :i ’a(""pk"'pk)'

Here B and B are the contributions to the internal fields at a point »
from a molecule o% the type B with position r'p K and velocity c'p K °

They may be derived from the scalar and vector potentials ¢ B and A 8
defined by

8(y' - 8 (c'-¢'
’p(r’t) = ep = ep (r r pk) (c ¢ ﬂk) drldcl ,
r-r' r-r'
|- gl | | (1.11)
A(rt) = 1 eic_ﬁ—k_ 1 epclb(r'-r'fk)3(c' ‘°'pk) dr' de' .
° S lrryl |* -

We thus have the electric charge and current densities due to a molecule 8:

9 (Fit) = e 8(r-rq,) = Iep&(r-rpk)G(c-cpk)de.
(1.12)
ep (w,t) = °p°pk°(""pk) = I°p°‘("'pk)°(°'°pk)d°°

It follows from the formulas (1. 11) that the internal fields !5 and ‘ﬂ
defined by
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>
+
Of v

d =
T

ale
©

_ 40 (1.13
By = 5> x A, )

satisfy a set of equations which is completely equivalent to Maxwell's equa-
tions for macroscopic fields (Brittin [2]),

g . =
ar Bp = 4%%p - 7 Bg =0
(1.14)
d _ 1 4 d _ 1 4 4x
ir *B " ccaww B wF*BccwEtT e

The external fields E_ and B_, which may be derived from the exter-
nal potentials ¢ and A _, naturaﬁy satisfy the corresponding homogeneous
equations. It £811ows thft the total microscopic fields (1.10) satisfy Max-
well's equations with the respective charge and current densities

Ay, = g iqep = ﬁj’eprp (r', o', t')dr'de’

(1.15)

dem

;: : Jep = :IepC'Fa (e', ¢', ¢')dr' do'

The fields E and ’m may then be derived from the total scalar and
vector potenti‘g.’ls

e
-¢b +I2¢ =¢ +2f—B F (¢, 0, t)arde,
ém = b, pk% o 91"’"'| g (¥, 0", t)drdo
(1.16)
e, C'
A=A +TZ2 A, = A_+2]—B _ F (r, e, t)drde’ .
m ° Bk P ° IIl"-x"l B
Instead of the set (1.10) we can also write
E_ = lon:jl:'3 (x-,rv,e')Fp (r',0',t')dr' de'
P (1.17)
B = l°+ :[B (r,r'.c')FB (r',e',t')dr'de’
B

The contribution to the force F (1.4) from these fields is
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Fom *© ;—u;(‘m+'<:'°xsm) =
s " [(: +-°"3)+”(‘p lexs )F' dr'de'] . (1.18)

According to equations (1.17) the averaged macroscopic, electric and magne-
tic fields are

E = (zm>

' +zjz dr'de’

8'p
(1.19)

B +I anf'p dr'de' ,

B = <nm>

while the averaged force <F r m> which is included in equation (1.8) has
the form

o) = [I(B +%cx8)+§](l +clcx3p)faadr'do'].

(1.20)

Hence this force cannot be immediately expressed in the usual way by the
fields B and B.

It follows from the above equations that the macroscopic fields E and
B may be derived from the potentials ¢ = (¢ . and A = (A n> ,

satufy Maxwell's equations with charge density Qe <Q emY and

(emy

4. THE COLLISION TERM
0 f

The collision term represents the effects of direct interaction

between molecules and their proper fields. The major difficulties in solving
Boltzmann's equation are usually connected with this term.

We shall now discuss the conditions for a gas composed of two kinds of
particles with positive and negative electric charge. We shall see in Section
4 that the correlation length for interaction between identical and non-
identical particles D is given by

s \ 1 -
D = ("—z—) , 4 = kT , (1.21)

8%e™n

when e, n and T is the electric charge, denlity and temperature, respec-
tively, of the particles.

Two other distances of interest are
2 -4

= 2 = 3
% = 7 and d = n . (1.22)
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Two pa.ticles that collide with each other with the impact parameter Q,

will on the average be deflected by an angle x/2, and d is the mean
distance between the particles.

If we now assume that the kinetic energy of the particles is much
larger than the mean electrostatic energy of interaction, i.e.

2 2

e e
—_— , _—= < d , .2
<« 3 . Qo (l 3)

it follows immediately from expression (1.21) that

1 « nD?, d <« D . (1.24)

The assumption (1.23) is nearly always satisfied. The impact parameter
Q . for deflection at a right angle is thus much smaller than the mean par-
tille distance, and the latter is much smaller than the correlation distance
D,

9, << d « D . (1.25)

Employing the usual terminology [3], we let the term "'short-range
collisions' mean interactions between particles with impact parameter in
the region (0, Qo). As Q<< d, such collisions will practically always

be binary. The contribution of these interactions to the collision term

a_f
:t is given by the binary collision integral [4],
J cfa dcfc
- - ' ' -
T g( oI )ﬂ-g[[fa © a)fe(c p) fa(cu)fp(cp)]wapbdbdcdca, (1.26)
where w, B = I(c‘x - °p)| is the relative velocity between two particles

@ and § before collision. The quantities ¢, and cg are the velocities
of the particles after collision, and are functions of ©,, cp and b. The

impact parameter b - the distance of closest approach of the particles i
the absence of mutual influences - and the polar angle ¢ characterige the
collision geometrically. The region of integration of b is (0, Qo).

When the impact parameter b lies in the region (Q,, d) we no longer
may assume the collisions to be binary. Encounters with more than two
participating particles will be equally probable.

Interactions with impact parameter in the region (d, D) may no longer
be characterized as collisions. The change in the state of motion of a par-
ticle arises from a simultaneous interaction with a very great number of
particles. In view of the large number of particles, the sum of the many
weak effects of this kind most often becomes much larger than the relative-
ly few, but strong binary collisions (Section 13). Such multiple interactions
are called "long-range interactions'.

We shall see in Section 10 that such multiple interactions can be repre-
sented by a ''collision integral' of the Fokker -Planck type, first derived by
Landau rS] ,
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dct'a . dcfa) i
dt it /B

2 2
2xh e’ % f, offy  fy of, '
--ETW.IU.(mB T -ma 5o de' . (1.27)

Here A = In (D/Qo) is a cut-off factor which arises from the fact that we
have taken into consideration interactions with impact parameter in the
region (Qy, D). We have thus included the contribution from the transition
zone (Qo, d). The quantities eq and eg are the respective charges of

the particles @ and f, while mg and xgﬂ are their corresponding masses.
Further, fg = fg(c) and fg = fg(e') are the distribution functions for the
two types of particles. The tensor WU is defined as

U=;13-(uzll-uu), u=o90-¢, u = |u| , (1.28)

where I is the unit tensor.

Interactions between particles with impact parameter larger than the
distance D may be characterized as plasma oscillations [6]. Their effect
must be included in the macroscopic force term in Boltzmann's equation.

Before turning to the exact derivation of Boltzmann's equation and the
determination of the collision term (1.27), we shall take a look at the con-
nection between the macroscopic and the (statistical) microscopic quanti-
ties of a gas.

5. MACROSCOPIC AND MICROSCOPIC QUANTITIES

The distribution function f; = fg(P,0,t) gives the density of an aggre-
gation of identical molecules a at the point (r,¢) in phase space at the time
t. By definition, the distribution function can only have a statistical inter-
pretation. The macroscopic, measurable quantities in which we are inter-
ested may be identified as mean values over velocity space of microscopic
quantities with the weight factor f4 . If, therefore, we can find in what
way fq depends on pr, ¢ and t, we have the exact solution to the rele-
vant physical problem. The microscopic quantities mentioned are always
various kinds of molecular properties, such as number, momentum, energy,
mass and electric charge. Welet ¢ = ¢(r,c,t) denote the molecular pro-
perty (generally a function of the position r and velocity ¢ of the molecule,
as well as the time t), and define the mean value of ¢ for the molecules @
in the following manner,

ng $o= Jog fpde, . ng = f de, . (1.29)

Here ng is the density of the molecules a in coordinate space. In general,

both n, and $q are functions of r and t, while ¢ may be a scalar, a
vector or a tensor.

If the gas is made up of several component gases (¢ = 1,2, ...), we
define the mean value § = § (r,t) for the whole gas by the expression
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n = £n¢§a = g. Itafadou , (1.30)

where n = I n, is the total gas density.
a

For the mean velocity, for instance, we get

né =In,8, = I [ozfgdo, (1.31)

instead of which, however, general usage prefers the mass*velocity oo,

Qe = nmeé = £ ngmy€, = Eqaéa = § %an , (1.32)

where each molecule is given a weight which is proportional to the mass of
the molecule mg. The quantity Qg = ngmg is the partial mass density,

and q = E Qq is the total mass density. The momentum of the gas per

unit volume is evaluated as if each molecule moved with the velocity ¢
The mass velocity ¢ , o of a component gas coincides with the mean velo-
city ¢ a

The thermal velocity Cq of a molecule in a composite gas is general-
ly defined in relation to the mass velocity,

G¢ = Cq -co ’ i.e. 2 Qa ca = 0. (1.33)

The components of this vector are denoted by (U, V, W).
If we treat each component gas as a simple, independent gas, it is more
natural to define the thermal velocity as

C, =o¢, -¢ i.e. 6; =0. (1.34)

ao '

In the following we shall, in general, use the first definition, but we
shall also have occasion to make use of the latter viewpoint.

The mean thermal energy of the gas ( § = %mcz) is

n(%mcz) = E n (4 muci) = g-n ., ¥ = KkT. (1.35)

This is to be considered as a definition of the temperature T.

6. FLOW OF MOLECULAR PROPERTIES

We shall now investigate the flow of molecules through a small '"test
surface' with area dS and positive normal direction m [ 4]. The velo-
city of the surface element is O . The relative velocity of a molecule
with respect to dS is

| I =
c;' =e, -¢ =6, +C -0 (1.36)
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We consider molecules with thermal velocity €, in the interval
dC, . In the course of a short time all the molecules in the group that
were originally contained in the volume

dr = € . dta8 = n. ¢ dus
will pass through dS. The number of molecules thus is
rel
£, dC, (m - C, )dtds . (1.37)

If each molecule carries along the molecular property ¢a (C, ). the
total amount of this property passing through the surface dS during the
interval of time dt will equal

rel
n- ca afadcadtds . (1.38)

The total amount due to all molecules a per unit time and unit area then
becomes

fo-cM¢@,f,dc, = ng (¢n-C ). (1.39)

This is the component along n of the vector (or tensor) n, (¢, Car'l) ,
which further equals

ng (§, €3') = ng (@, €, ) +n e, -e) b, . (1.40)

The last, so-called convective part, disappears when the test surface dS
moves with the mean velocity of the molecules ¢,. In this case we obtain
for the flux of the property ¢,

ng ($gC4 ) . (1.41)

which we call the "flux vector' of the property ¢ .
The flux vector for the number of particles (¢, = 1) thus is

ngCp (1.42)

and disappears for a simple gas. It is also called the '"diffusion vector" of
the molecules a .

The flux vector of momentum is found by putting 4) = m€C , which
gives

n (mg€, Cy) = P, - ' (1.43)

Another term for this tensor is the ''stress tensor' of the molecules a .
In the same way the flux vector of energy (¢ = } mC2) is

ng (4 macﬁ Cy) = Q¢ - (1.44)

This vector is usually called the "heat flow' of the molecules a .
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The expressions
ngGy . P and q,

thus give the flux of the number of particles, momentum and thermal energy
through a surface which follows the mean motion of the gas. The flux of a
molecular property which is independent of the velocity, ¢, = Ko, , (e.g.
mass and electric charge) is evidently given by the vector

n K,C, - (1.45)

The total contribution for all component gases a is of course the sum of the
single contributions,’

nK€ = EnaKaca ,

= nmC C = )&‘namaccca = EP“ , (1.46)
q=n-}mczc=8-}mczc =2 q
pd a~a “a o ta

According to equation (1.33) the mass flux vector (Kq = mg) becomes
zero, while the electric charge flux vector (Kq = e“) becomes

J* = ne€C = E ngeqCq = Enaeaéa -(E‘ ngegle, . (1.47)

This, therefore, is identical to the conductive current density, which is the
difference between the total current density and the convective flow.

The flux of momentum, or the force transported in the gas through a
surface with the normal direction . is

pi=ci-]p=p-oi=nmcic , (1.48)

P being symmetrical. Part of this force,

2
Py = o P-e, =nmC) (no summation) , (1.49)

works perpendicularly to the surface, and is a pure pressure force, while
the remainder works parallel to the surface, and is a pure shear force.

For instance,

Py = o, P - e =n(mCcC), k i, (1.50)

is the force working in the direction e, Ona surface with the normal e; -

Writing the stress tensor on matrix form,
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—_— - - -

Pjy P2 Py3

= & rrrr
W] =[e€ C)=a|VU V° VW| = |Ip,, p,, P,y , (1.51)

P3) P3; p33J

. ! -l -
we see that the diagonal terms represent the pressure forces, while the
other terms represent the shear forces.

The hydrostatic pressure is defined as the divergence of p,

W B
TPy < 3P:L =

_ 1
P = 3Pyt Pyy +Py,)

Lam @ +92 4% = Lot

In the case of equipartition of energy, with a contribution }kT for each
degree of freedom, we get

2

(1.52)

P = nkT = nd . (1.53)

The tensor P can be split into two parts (I = unit tensor),
° 1
]p=p+3-(]p:][)ll. (1.54)

The first, divergence-free part is the shear-stress tensor , and the other
part, the pressure tensor, represents the scalar pressure.

Analogously with equation (1.51) we can write the heat flow as a column
matrix,

S _
cu qlW

() = [n%mczc] -te | AV - q, , (1.55)
2w
| ©V ] |93

where the terms represent the energy flux in the three coordinate directions.
We may use a similar denotation for all vectors, e.g. the diffusion vector.

The tensor g and other tensors may of course also be represented by
column matrices, where the nine terms follow each other in a predetermined
way. We shall use this form of expression on a later occasion (Section 21).
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7. THE MACROSCOPIC TRANSPORT EQUATIONS

1f we perform a transformation of coordinates from the set (r, e L t)

to the set (r,C,,t), €4 = @4 - 6, , then Boltzmann's equation assu-
mes the form

dfa Cf dco df dfa P cf.
T‘.'ca . +(’ ) T 1 C: ‘— = -3t (1‘56)
where
d _ o 9
I "t %% Ir

(Two points: between dyadics means that scalar multiplication is twice
repeated.)
If we multiply this equation by Q,dc. where ¢,(r, C, ,t) is a mole-

cular property, and next integrate over velocity space, we obtain an equation
to determine the course of development of the corresponding macroscopic

quantity ng § o,

— T T
%i-na.. :_r.coﬁ-:.—r-(nccaQa)-nc[?tg'} c¢ . d_: +

(1.57)

de ¢ o a.¢
+(!‘¢-—&3)- T;;"(?Ed';'rahc'nq; C,: B‘T °,] = na:_ta

The right-hand side is defined by

K ) é £
ng {.t_‘! = Jo, -o%idcc , (1.58)

and gives the time change of the total amount of properties §4 in unit volume
due to the collisions experienced by the molecular carriers a of the property.

The other effects contributing to the total time change of the property §,
in unit volume are:

a) The net flux of molecules out of or into the volume.

b) The way in which ¢, depends on position and velocity, and on
time.

If we substitute €, for €, from equation (1.34), then Boltzmann's
equation (1.56) and the macroccopic equation (1.57) will have precilely the
same form, provided that we replace €, by c , and e, by e,
everywhere.

We can now insert a set of microscopic quantities in equation (1.57),
obtaining a corresponding set of macroscopic transport equations. The
three transport equations for the number of particles (¢ = 1), momentum
(6 = mC) and energy ( ¢ = $mC2) are of special interest. We shall re-
turn to these equations later.
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We now proceed to the exact derivation of Boltzmann's equation (1.9)
and the determination of the collision term (1.27).

8. DERIVATION OF BOLTZMANN'S EQUATION
The averaged Liouville's equation (1.8) has the form

df df dfa

Tt Py Tetis 2 Fp fapdride’ = 0. (1.59)

No approximations have been made so far. In the case of only electric and
magnetic fields, we have, according to (1.20)

e
°+écxlo), ’aa =-r-na—a(lﬂ+éch.),

As a result of interactions, the particles will not move independent of
each other, certain correlations will exist between the motions of the in-
dividual particles. This physical condition may be mathematically formu-
lated by letting f4p have the form,

fap(r.e,r',c',t,t') = fy (r.o.t)fp (r,e'.t') +9aB(r,c.r'.c',t,t') . (1.60)

The correlation factor Pap is only important in a region, the dimensions
of which is the correlation length (lr - r'l < D).

The distribution functions of higher orders have corresponding forms.
We can for instance write faﬁy :

fap.y (t.c.l".c';l‘".c".t.t'.t") = fﬂ (r.c,t)ip(r',c',t')fy(r".c",t") +
t falr.eit) 95, (rrie!, 7 e, t!,t") + £ (X, 0',t") %ra (r,e",r,c,t",t)+
+ f.,(r".c".t")v.p(r.c.r'.c'.t.t') t 948y (r,e,r',c', v, e, t,t',t") . (1.61)

When equation (1.60) is substituted, equation (1.59) assumes the form

of dfa af

a [ J ' ' =
5 te gF t 'G'W+3’3'§Ir¢a’cﬁdrd° =0, (1.62)

The total macroscopic field of force P is expressed in the usual manner
by the averaged electric and magnetic fields E = <l and B = <Bn->
defined by equation (1.19) (plus forces of different origin).

We permit ourselves to assume that the correlation region where ¢¢p
differs from zero is so small that no noticable error is committed by
neglecting the time retardation and other relativistic effects within this
area. We may then neglect the magnetic interaction between the particles,
and only take account of the electrostatic interaction. Equation (1.62) then
reduces to

(!f‘x of of

L a ._& . d o ege r-r' -
3t 57 ¥ Ge tie g—!-ﬂ?nc I—_I"""P 9pdrde = 0,

(1.63)
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where

e
_ a 1

Equation (1.63) is the starting point of at least two important recent
investigations, the first by Kadomtsev [7] and a later one by Green [8].
Green shows how one can deduce macroscopic equations directly from
(1.63) (by taking moments in velocity space). Kadomtsev's procedure is
not quite as general as Green's, but it gives a better insight into the micro-
scopic behavior of the system. In Sections 8 - 10 we shall therefore make a
further study of the implications of equation (1.63) along the general lines
of presentation of Kadomtsev, showing how the usual Boltzmann equation
can be deduced from equation (1.63) (with a collision term differing some-
what from the usual ones). Unlike Kadomtsev, however, we shall allow
magnetic fields that vary in time, our equilibrium conditions (1.57) are
more general than his, and our results are in part valid for a less restric-
ted system.

Later on, when we deduce the macroscopic equations from Boltzmann's
equation we shall occasionally have the opportunity to make comparisons
with the results of Green.

Our system is now a binary mixture of electrons (index 1) and positive
ions (index 2), and we suppose that the assumption (1.23), stating that the
electrostatic interaction energy of the particles is much smaller than their
kinetic energy, is correct,

ez/d <« 3 or 1 << nD® . (1.64)

In this case all correlation factors ¢ are small quantities, while the triple
correlation @qpy is smaller than the binary factor @qp by one order of

magnitude, and may be neglected.

The problem is now to find ’“3 . We can derive the equation to deter-
mine ap in the following manner:
We write down Liouville's equation (1.3) for F, (r,e,t) and for
Fp (r',e\t'). We multiply the first equation by F! and the second by F, ,
add and average. In this manner we obtain an equation for f ap which con-
tains f‘lﬁ y

of af of
r

of of
. ap . ap
*Feip T *Fpa g0

9 ndah . ' " da =
+ 5e i‘”“’ fap, dr'de” + o&- :‘”ﬂv fap, 47" de" = 0

(1.65)

(Ep + l e xB ) is, as before, the force per unit mass on a

“3
partlcle « at the "pomt" (r ¢) due to a particle g at the "point" (r',0').

In this equation we substitute the expressions (1.60) and (1.61) for

f_.and fﬂB'f and, using equation (1.62), obtain:

ap
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de__.(r,e,r',c',t) de de 'Y
ap +o 28 +c'-—-£d:+ra-—ﬂ-d: +

gt
S TR TR IR EAY R I
= 'Faﬁ i:_i . %ﬁ (1.66)
- _d% . 5!!'”9 ; (r',e',r",¢", t)de"dc"

af" —
"JE:E" i!rpr 9” (r.e,r',e",t)dr'"de" .

Equation (1.66) is very complicated and must be solved by methods of
approximation. We first require that the equation be satisfied in the station-

ary case (3%- = 0) by substitution of the quantities

3 2
f(o)-n(mc)/'ex (-M_
« " MelzEE, P 2s, :
(1.67)
'c(x;) = f(CO)('ﬂ(O) x.a(lr-r'| ’ xcp ) xcp

We next require that in this case the equilibrium conditions (2.91), to be
deduced later, are valid. These equilibrium conditions differ from those
adopted by Kadomtsev by allowing spatial gradients and a mean velocity
field ¢ o ¥ 0.

Our next step is a transformation of variables in equation (1.66) from
the set (r,e,r',¢',t) to the set (r,C,r',C,t), where €C =@ -8,
C' = e -¢' . On inserting the expressions (1.67) into equation (1.66) we
obtain, after some limplifxcatxons an expression which is a polynomial of
the second degree in € and €' The constant term and the coefficients of
the second-order terms disappear when the equilibrium conditions (2.91)
are introduced. This is also the case for a part of the first-order coeffici-
ents. The remaining part must also disappear, and we are left with the
equation

X4 %% r-r’

ir ~ " & """F -
a®s r-r' ®a s r-r"
= Xagn +2 X n" dr" . (1.68)
¥ o jrr)d %Py T2 !',_,..ls By

On putting -, =e,=e, np=n,=n, Kadomtsev's equation results. This

equation is therefore valid for more general equilibrium conditions than
those adopted by Kadomtsev.
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Putting in equation (1.68) r-r' = @, r'"-r' = q', the equation
takes the form

dxa () e e
ﬂ ¢ _ a ﬁ 3
53 2 B a/o’ = —— /97 xgg(a) +
een Q-Q'
+3 211 yde' . 1.69
y 3 le-a'|° T (1-69)

For distances Q greater than the distance Q, ~ ez/b corresponding to a
mean deflection /2 of the particles when they collide, we can neglect
the first term on the right-hand side of equation (1.69). The resulting equa-
tion is easily integrated, giving

een e _¢e
ayy 1 ' ' - . @B ]
x B(6) +§ ry ) W x”(o )de —;—E < (1.70)

We have shown that the arguments of Kadomtsev may so far be extended
to a more general situation. As the further computations are lacking, we
shall nevertheless be satisfied only to give the results of Kadomtsev. We
must expect, however, to get similar results even in the more general case.

Assuming with Kadomtsev that -e, = e, = n, = n, (elec-
trical neutrality) the solution of equation ( 1. %0) is gwen by
X .28 1 _-8/D
ap (9) 7 3 ' (1.71)
where D is the Debye shielding distance,
2 \
D = (—5 . (1.72)
(8!e n)
and at distances greater than D the correlation betweqan the particles will
rapidly approach zero. The condition (1.64), Qo = & «d, means
' . .2
that the region where the solution (1.71) is not valid, Q ¢ S , constitutes

a very small part of the total correlation region. We shall therefore not
worry about the form of the solution within this region, but simply neglect
the effect of collisions with impact parameter less than Q,. This is equi-
valent to neglecting the short-range collisions (Section 4), “and entails that
the first two terms on the right-hand side of equation (1.60) may be dropped.

We shall further assume that the deviations in the state from the equili-
brium conditions (1.67) are slight. We may then insert the expression 94
(1.71) into the right-hand side of equation (1.66) which is small in terms o
l/nD , and also into the terms on the left-hand side involving the macro-
scopic forces. We write these terms as the sum of a part symmetrical and
a part antisymmetricalin @ = r-r’', and correspondingly split a8 into
two parts

o5 - vf,’;,) + 91‘;) : (1.73)

"s;) and 9'(;5) are then defined by
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ap () ag (+) de (+) m m
. a . af - 1 v, W '
F- e —g2lvo 2P - L 2o r, +—Loe RO
(1.74)
dvt(") oq(') del-) of of!
<} a ,, ep _ |1 a . 1 d
3t +¢- ﬁg"'c —d—F-'- n-Tasc— fp -m———afad—.gr d—r-U(Q).
(1.75)
where U(Q) = -ez/Q e-Q/D y Q= Ir - l"l

What is now left is to solve the equations (1.74) and (1.75) and insert
the resulting expression (1.73) into equation (1.63). The form of this equa-
tion is then determined.

The contribution to equation (1.63) from the symmetrical part ¢ é+)

may be considered as a correction to the macroscopic force field. This
correction has the form

e e r-r'
= «p

z o) 4 dor | (1.76)

Ir_r||3 aﬁ

and is in general a functionof r, ¢ and t.

In a similar way the antisymmetric part 9‘(1;3) will give a contribution

é f e.e r-p
ca _ a’p 4 . (') ' '
- -—a—t-— = % mc a-E I I—r:-;'—P— ’ap dr dc (1.77)

to the equation. This contribution we define as th - collision term.

It is worth noting that both the correction AFc and the collision term
d {
—gt—a will vanish when the correlation between the particles, represented by

ap’ vanishes.

9. THE CORRECTION TO THE MACROSCOPIC FIELD

We shall not carry out the detailed solution of equation (1.74) as has
been done by Kadomtsev. His results may be summarized in the following
remark.

The existence of the correction term AF, may be explained physically
by the formation around each gas particle of a correlated '"cloud" of particles
of opposite charge and dimensions ~ D°. Inthecase E = B = 0 the par-
ticle cloud will be spherically symmetrical, but when E % 0 the '"polariza-
tion" APy will make itself noticed. When the magnetic field is weak, the
polarization will be along ~E, while in the opposite case the displacement
of the correlated cloud and the polarization will be along the strong magnetic
field. The gas thus behaves like a dielectric medium.

The "polarization" AF, is, however, proportional to 1/nD3 and maybe
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neglected when terms of this order of magnitude are unimportant, For real
gases, on the other hand, where the interaction energy is not negligible, the
Yvirial term" A Fu plays an important role.

10. THE COLLISION TERM

0 f
We now try to solve equation (1.75) for 9((!"3) , in order to find ‘;:
by substitution in equation (1.77).
We assume that the distribution functxons fq = fg(r,0,t) do not vary

appreciably in the correlation region (~D ) and moreover that they are
approximatively constant during the time used by a particle to cross this
region (on the average), we may neglect the dependence in time and position

for fo, i.e. f4 = fz(6). We further assume the following form for
vf{p) '
‘Pié) = ’4(1.6) (z-2', 0,0") . (1.78)
Equation (1.75) then takes the form
agf-) of of!
00 —g = (- o G- ”l"a fo gar) o U@) . (1.79)

The next step is to introduce cylindrical coordinates, so that the coordi-
nates for Q@ are (r, ¢, z). The z-axis is chosen along the vector ¢ -¢'.
We then get

. d 2, 2
L o) Genee) - [_x_gf_a_fé L dfﬁ].ﬁU(Qn)'

Iz mg d¢ mg @ de’ le-cf
(1.80)
which can be immediately integrated, giving
of of* ]/ 2, ,2 '
o) s | L Ja L Cpl.e ¢ uletie) gy
ap m, de¢ § mg a deo JQ |°'°'|

We have then assumed that ,( p 0 for z = - @ . We now substitute
( ) in equation (1.77), gettmg the final expression for the collision term,

aﬁ

2.2
9 f 2xhe e £ df £ of!
ca _ B 9 . a__a <] '
= .;: ____a YTy ] U l: T 5 “] de' . (1.82)

This is the collision term on Landau's form, given in equation (1.27). This
term has been the subject of some controversies in scientific literature.
Enoch [9] has recently proved the equivalence of the Landau collision term
to the Fokker-Planck term on the assumption that binary correlations domi-
nate.
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With this collision term equation (1.63) takes the form

of af ¢ £
aQ (] d  moffy _ ca
3Tt gr tie g Py ) = 3T (1.83)
where
l.,cff =P + AF
a " %a a

In the case 1 << nD3 we neglect A P, . and equation (1.83) gives us
Boltzmann's kinetic equation (1.9).
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PART 11. RELAXATION PHENOMENA
AND EQUILIBRIUM STATE

11. THE H-THEOREM AND THE TENDENCY TOWARDS
STATISTICAL EQUILIBRIUM

When we consider the statistical state of a system, the molecular
interactions are of decisive importance. Their significance has been
clearly stated by Fowler [10]:

"Any possible mechanism (of interaction) left to act by itself must set
up and preserve the laws of statistical equilibrium."

The so-called H-theorem for gases was first proposed by Boltzmann
in 1872 [11] . It stated that, when left to itself without interaction with
the environment, a gas would approach statistical equilibrium represented
by a Maxwellian distribution function, as a result of binary collisions among
the molecules (E is ti:e sum of kinetic and potential energy, E = } mcé+mé¢),

f = n(%;l) % e  BE B = 1/kT . (2.1)

This distribution was earlier found by Maxwell in 1860, but at the time his
proof was not considered satisfactory.

The point of departure for Boltzmann's proof of the H-theorem and the
subsecquent improvement on the theorem was Boltzmann's equation.

In the Maxwell-Boltzmann statistics the thermodynamic ""probability"
for a system is given by

N;
W =N'TT 1 (2.2)

i Ni!

where Ni is the population number and Gi the statistical "weight' of the
i-th phase cell in the six-dimensional phasée space, while N = 2 N1 is

the total number of molecules. We assume W to have an incre}ling ten-
dency, and W = W_,, or §W = 0 characterize statistical equilibrium.

The latter quantities are distinguished by Boltzmann's law of distribution.

-BE,
=-!z—e t B = 1/kT , (2.3)

.2

where Ei is the energy level of the i-th cell, and the '""sum of state"

-BE,
zZ =2 Gie
i

In this state the thermodynamic expression for the entropy is given by
S = In W (k is Boltzmann's constant).
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scopic quantities. What interests us is to find the miorogoopto justification
of those assumptions. We have so far merely assumed that the thermodyna-
mic probability of a system has a growing tendency, with the result that our
system approaches the state of equilibrium. With the aid of Boltzmann's
kinetic equation we can now directly show that because of the interaction
between the molecular systems the function H will decrease towards a
lower, negative limit which corresponds to thermodynamic and statistical
equilibrium (The existence of this lower limit has been proved by Chapman
and Cowling [4].) The state is then stationary with a Maxwellian distribu-
tion function, and the entropy S, = -kH,, corresponds to the classic

thermodynamic entropy. This is the substance of Boltzmann's H-theorem.

12. PROOF OF THE H-THEOREM

According to the definition (2.9) the time variation of H, is given by
the expression

dH, “a
5t °© [(l+lnfa)-3-t—dc (2.10)
“a
in which we substitute for 3t from equation (1.83) and rearrange, getting

e _ Ca_0 . pof
I LT Jef, lnfadc+j(—:; Y ) In g de | (2.11)
or
dH ¢ H —
a _ cue@a [ ] d off
__di..--—o—t—-ﬁ.(naclnfa) +nc(d—c. )1 f . (2.12)
chc
Here 13 is the change in H; because of the molecular interactions
(JTdc = 0, see Appendix),
d l-& f ¢ Inf
c c [
—59t ° I\l+1nf )T de =ng —g— - (2.13)

If we write

dHa ‘ ‘H
—?-E—"' (n clnf) T—+n(—

P yms, (2.14)

this may be interpreted as an equation of continuity for the "entropy denaity"
H, . This equation also follow- from eqnatton (1.57) by setting @4 = In fq -
The vector ngelnfg = [cfyln{ is the "entropy flow density"', and
the right-hand side of equation ?2 14 il the "entropy source density".

As shown elsewhere (Section 8) the effective macroscopic field l‘:"

which includes 4F, may be a functionof ¢ . We can therefore not imme-
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There is no thermodynamic definition of entropy for non-uniform and
non-stationary states, but it is convenient to choose the equation

S = klnW (2.4)

as an eguation of derinition even in this case, W being defined for all
states. This procedure seems natural as both W and S are assumed to
have increasing tendency, and because the entropy for thermodynamic
systems is additive, while the thermodynamic ""probability" is multiplica-
tive. (This argument has been criticized by Fowler [10].)

If we use the expression (2.4) for W and Stirling's formula
InN! = NInN-N,
we can easily deduce that
Ni Ni
Inw u-i(czlnc-i-) Gi+NlnN. (2.5)

The statistical "weight'' G. is by definition proportional to the volume of -
the i-th phase cell A¢i . If we choose the proportionality factor equal to
unity and let A¢; - h3 (h is Planck's constant), the average density of
particles in the phase cell,

N, ANi
G T

approaches a limit f, and the sum (2.5) can be replaced by an integral,
Inws* -Iflnfd‘¢+Const.. d¢ =drde . (2.6)

Our expression (2.4) for the generalized entropy thus becomes

S = S(t) = -k [ filnfd$ + Const. . (2.7)
If we have a composite gas, we define the entropy as the sum of the
entropies of the different components of the gas (¢« = 1,2, ...),
S = ﬁsa. Sy = -k]fc Inf d¢ . (2.8)

This corresponds to the total thermodynamic probability being equal to the
product of all component probabilities.

Instead of Sy it is customary to work with the functions H ao °f H,.
o «
defined by
Hg, (t) = JH adr, Hy(r,t) = [ £, 1nf do , (2.9)
i.e. §; = -kH .

Thus H is proportional to the negative entropy.

The distribution (2. 1) now corresponds to tae equilibrium distribution
(2.3). This result, however, rests on several assumptions about macro-
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diately put % . F:" = 0, even though the contribution from the Lorentz
e

term r_ng' ¢ X B of course vanishes., This approximation is, however,
a

permissible on the assumption nD3 » 1, and the "entropy source density"
is then completely due to the so-called collisions.

For the time variation of the negative entropy within a closed surface 2Z
we get the expression

IHy, 9 —— Jd Hy
—3t ='£ﬁ'(“c°lnfa)dr+£_t—¢ dr =
sy ‘CHI
=-In¢clnf¢ds+[—a-t—dr. (2.15)
z v

If the first contribution disappears, we are left with the change in Hao
due to collisions,

dHco ) d_H, ¢ H, ) dcln a 6
—3 - Tdr, —5t = "a —37— - (2.16)
¢H .
Our problem is now to show that collisions can only lead to T 20,

where the equality sign is valid when the state of equilibrium is attained.

We have seen earlier that collisions in ionized gases must be divided
into binary or short-range collisions, and multiple or long-range collisions.
The validity of the H-theorem, on the conditions that collisions are binary,
was first proved by Boltzmann [11] . More unassailable proofs were later
given by Lorentz le] , Jeans [13], Fowler (10] and others, both for a
simple and a composite gas.

The procedure of these authors is substantially that described by Chap-
man and Cowling [4] , and consists in substituting the two-particle colli-
°c£¢

d{ 1

transformations, showing that the following relation is valid,

sion integral (1.26) in expression (2. 16) for and, using certain

d Hg
cha
It is further shown that the equation T 0 and detailed balancing

(i.e. the quantity fo f is unaltered by collisions between particles of the
types @ and B ), can only be valid for a Maxwellian distribution function.

In these treatments, however, the effect of long-range forces of ionized
molecules has not been taken into account. This we now want to do.

We shall show that the H-theorem remains valid provided that we let
the molecular interactions be represented by the collision term on Landau's
form.

Consider an ionized gas, composed of several componerts (a = 1,2,

...) with distribution functions f a (r,c,t) particle masses m, and
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dcia
particle charge e, . The collision term -5t is the sum of all contribu-

d f
tions _%Ta_ B’ contributing to the change in f; from collisions with par-

ticles B . According to (1.82)

Bln

9 f 2xrelel oft  f' of
ce __.P d _E B _a '
(T) B = = Ju. ( T c) de' , (2.18)

where f'p = fB(o') .
The total negative entropy per unit volume is

H=2H, = [f Infdec

R
For ( cdta) g Ve get (kgp = 2 Aeled)
K

Jd H dln
(Ct“ = - 2F fdelnf, (L——i
B m, mg
1 d1n fa
We introduce the following abbreviations,
Vo=V (o, o0 = 1 dlnf'B 1 dlnf‘l
ap ap mp dc' mg de
and (2.20)
Agg ‘ap(") =IU-Vapf¢dec' ,

i.e.

¢ _H k
ca - ap d _
(‘T‘t )B = ] Inf, 5o Mep d¢ =

P

k
= op I%-(lnf¢A,p)dc+F‘;LJAap-_‘%_mfcdc.

(2.21)

But as A,g is proportional to f, (2.20), the first integral in equation (2.21)
must vanish (assuming that fo -o 0 when |° | -~ ®), and we are left with

Jd H k dlnf
cal _ e _ «
( gt )p T Tmg IAap (e) dc de

(2.22)

r
[ 9 .H dln f
(%_ti)a= kapfdcfdo- fafp' mla dc. ) U'ch(o,c').
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¢ H
For (_%t_p')a we get in a completely analogous manner,

( Tctp)c = kpg Jdofde'fgf; EIE_TFL U Vpale, e

(2.23)

The value of the integral does not change if we switch about the primed and
the non-primed quantities,

ch ' 1 dln fB' '
(_d__ﬁt )a =kp¢Idc'Idc faf. g —or— " U Vg, (', ¢c) . (2.24)

The order of integration may also be changed,

d H dln !
&'%Eﬁ)uzkﬁajdcfdo'f'ﬂfa mlp d&p 'U'Vﬁa(c',c) =
dln f!
= k.p! dQI dclfuf'ﬂ -n-;l; ———d—c—'ﬂ—. v - vpa (ol.c) . (2.25)

By summation of equations (2.22) and (2.25) we get, using the relation
'n = ’. ’ ! [ 2.
vpc(c c) ch(c ¢') (2.26)
that

d
("":’H‘")a *(——ﬁ%ﬁ)a = keplde J deiyfy Vop (0,0 W: Voq (¢0).

(2.27)
and therefore also,
S\ W T de’ f f' V V- U-v (e, e) 2.28
T,"—z—!dcfcaa “(0.0) -“c.c. (2.28)
As
U =—l3-(uzl-nn). u=c¢-0'),
u

the expression V- U : ¥V has the form

V-wU.vV =_;_ [w2-V. X -V -(V.-u)u.V)] =
u

s LPvio(uv)Blz o, (2.29)
u

and the expressions (2.27) and (2.28) are always negative. They equal zero
only if u and V are parallel vectors.



- 37-
We have thus proved the H-theorem even in the following case,
d H d cHa d cH

C

= I = I 2 =4z ‘cHa +‘°H‘3 0. (2.30)
_JT",_BT"WTB' ap it 8 gt aqf < 7 '

These results must be interpreted in the following manner:

The entropy for each gas component @ always increases as a result of
rultiple interactions between the molecules of the components, and attains
its maximum value when Vg, “ u (2.28),

¢ln ' d1ln
1 a 1 a 1 1
- = u = — (o-¢' 2.31
m, Jc mg ~ de 3, 3, ( ) ( )
for all ¢ and ¢' (@ = 1,2, ...).
We then have
i S SRS W deitel SV PR
mg do 3, m, do '
- _ 1
= Const. = —5:°¢O ’ (2.32)
and consequently
din f
1 e« _ 1
mq dc T e, (c - ep5) (2.33).
with the solution
My 2
fg = Ny exp [--z-‘:(o-c“) ] (a = 1,2, ...). (2.34)

The entropy for each gas component no longer grows as a result of the
interactions between the molecules of the gas component when the function
of state has become Maxwellian with temperature &, and mean velocity

Cao°

We easily verify that Cq, and &, are really the mean velocity and

mean temperature of the molecules by requiring that equation (2. 34) satisfy
the conditions

ng = J f.dc , n¢c¢° = Icf‘d. ’

g.o, = [4mg(e- e, )21, de . (2.35)

The first condition, the condition of normalization, moreover gives the fa-
miliar value Na ,
(™ %
e - “a\Z2xs
2xd «

Here n, is the density of the molecules «a .

N (2.36)
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We further see that the entropy will no longer increase as a result of
interactions between molecules a and B of different types (2.27) when
vaﬁ 1T a,

dln £,

¢ln £
1 g . 1 = l = .l. - ' 2.27
mg de' g — deo e r (e c') (2.27)
for all ¢ and ¢'. We then have,
din f dln '
1 a l = _l___.__p + -l t = = _l. 2.38
™, e +Q° g 5o 3 © Const 3% ° (2.38)
i.e.
dln f
. e . 1. 2.3
my; dc 7 (e o) (2.39)
which has the solution
m
2
f, = Naexp(-i-"l(c- e)) (e = 1,2, ...) . (2.40)

Thus the equilibrium distributions are once more Maxwellian, but in this
case with the same temperature, ¥, and mean velocity, ¢ for all
components of the gas.

o ’

¢ H
Such a distribution (2.40) will simultaneously lead to ("%'ti) a = 0
(for all a), so that

d H ¢ H
dH _ ca _ ca -
5t - E -3 ° p:u (—'d't_) =0 . (2.41)

Equation (2.40) will thus give the form of the distribution functions in the
ultimate state of equilibrium.

In a gas which is originally far removed from statistical equilibrium we
must consequently expect the following development:

Encounters between identical particles will initially establish local equi-
librium distributions for each gas component, each with its own temperature
and mean velocity. Next, collisions between the different gases will lead to
equalization, and in the ultimate state of equilibrium the components will have
the same temperature and mean velocity. The exact time development can,
of course, not be predicted without knowledge of the characteristic relaxa-
tion times of each of the equalizing processes mentioned. '

These relaxation times will be more closely studied in the following
section. In the special case that our ionized gas is a plasma consisting of
electrons (e}, m]) and positive ions (e;,mj), (m] << m3), we find that
the proportionality between the times ‘r.a for equalization of energy between

the particles @ and B is

- '\,‘“z M2 M2
Tt T2t Tp1t Ty Bl mlz ) :m1 . (2.42)
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The proportionality between the equalization times for momentum is

1 2 1 .2 . sz e 2
11,12.12.“‘ 1: _rrTl-"'er"l' (2.43)

This makes it possible to consider a plasma as consisting of two approxi-
mately independent component gases, each with its own well-defined tem-
perature equilibrium is established for each component much quicker than
mutual equalization. This is especially the case for the light electrons.

13. CHARACTERISTIC TIMES FOR THE RELAXATION PROCESSES

In the preceding section we showed that long-range interactions of the
type that will occur in ionized gases will make the system approach and
attain statistical equilibrium.

This is a property we must ascribe to all possible molecular interac-
tion mechanisms [10] and this is the microscopic explanation of the macro-
scopic assumptions that the entropy must always increase [Eq. (3.84)] .

All mechanisms of interaction are in this sense equivalent and unimpor-
tant as long as we only wish to describe states of equilibrium. If, on the
other hand, we wish to describe the development of states that are not in
statistical equilibrium, the types of interaction are highly important, as
they determine the relaxation times of the different equalizing processes.

The characteristic times 7tgg5 and ‘tg for equaliza'ion of energy and
momentum between two groups of identical molecules @ and g may in

é f
principle be evaluated with the aid of the known expression for ( j?-{-'—) B’

The average changes in momentum and energy due to encounters for
the molecules a per unit time is, according to the transport equation
(1.57), expressed in terms of the velocity C, = ¢, %

d () )
B, = n, 5o (meClq) . Qg = ng g (imgC'd) . (2.44)

They are composed of the contributions from collisions with the single com-
ponent gases,

R. = : B.B , Qa = g Q.p , (2.45)
Rog = J m,C,k °cfa de Qg = | m e'? °c’a d
ag ~ «“a \9t /p®®" ep " IMmLq 5T/ g%

The quantities with identical indices, a = g, vanish when the state of

. 9 _f
equilibrium is established for each component, i.e. (72;—)c = 0, while

the quantities with different indices, a # B, vanish only when all compo-
nents have attained the same temperature and mean velocity.
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According to (1.57) we get for the changes in the mean velocities ¢

and energies &, because of collisions, ®o
deg, 3 db.
ma na —at— = n. N En“ T = Qa . (2-46)

If we can now find expressions for R, and Q_, it is possible to determine
the relaxation times for equalization of mean velocity and temperature on
the basis of these equations.

Consider a gas composed of electrons and positive ions with masses
m) and mj. The effect of the collisions may be represented by Landau's
cohiuion integral (1.82). We first assume that each component gas is in the
state of equilibrium at different values of €,, and $,, so that

na=n.9n Qa=Q‘po C*ﬂ

Approximate expressions for these quantities may be found by taking
into account that the mass of the electron is much smaller than the mass of
the ion, m] « mj, and thatthe thermal velocity of the electrons is much
greater than that o? the ions, provided that &) and &, are of the same
order of magnitude. We also assume that the difference between the average

velocities, u, = ©;9- €3¢ is small when compared to the electron

velocity.

The tensor U in the collision integral depends on the difference between
the velocities of the clectrons and ions, and may then be developed after pow-
ers of small quantities. In the case that the ions and the electrons have a
Maxwellian distribution, we get according to Braginskij [14] ,

(a) dejg g - RS 1
a mm—x % T %2 'mlnl_t_l U
(b) 20 g .n, = 1L 4
mpt, =& T %2 T %21 C MM w, o
(2.47)
3 4%
(c) Z™ e " T Qp f - tRy Y,
dd m.n
3 2 _ - 1M
(d) Enz _dt— = Qz - Qzl ~ 352_?_ (”1 = '&z) .
Here
3
) I
11 = 11 = ’ (2.48)

22
4 VZI Aeleznz

and we immediately see from equation (2.47a) that <, is the characteri-
stic time of change of momentum of the electrons because of collisions with
the ions.

The characteristic time of change of momentum for the ions because of
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collisions with electrons, 1; , is much larger (2.47b),

Further, equations (c) and (d) of the set (2.47) tell us that the relaxation
times for energy are

2
Tz T iwm 1o
(2.50)
m,n
21 ¢ L 1o
mh
i.e. for the same particle density, n; = n,, we have
_ _ 1 _, M2 2
Tip = Ty = 3 T, = } ﬁ T - (2.51)

The characteristic times iy T2 ‘t{ and f% cannot be evaluated
in the same, relatively simple manner because a series development of

J f
ca i . .
(T—)a after small quantities is no longer possible. To find these times

we must evaluate Rgq and Qgqq in other ways with the aid of equation

(2.45). Using a procedure which will not be described here, Braginskij has
found even these times,

3YVm, s
< _ ml .l _ ﬁ
11 - = o

4VT ein,
(2.52)
¥/a
< ) 3sz Oz . zmz .
= = V - y
22 4V ein, my
and moreover,
1 2 _ .
TS Ty T, = Ty, (2.53)

It is worth noting that these relaxation times, derived with the aid of
Landau's collision integral, agree with the times found by Spitzer [15] for
the establishment of equilibrium of energy between two groups of particles
with approximate Maxwellian distribution,

im_m ) F ) /l
T . = « B ( « . 7p B = 1.2), (2.54
*® " WVzs AeZeZn \™a ) “‘ﬁ) (e y.o (@34
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and with Chandrasekhar's [16] times ‘tg for the establishment of equili-
brium of momentum between two groups a and B,

8 3V'3‘V"': "z/
# - , (2.55)

8xhed ‘3‘3¢\/3m_) v_)

Here the functions @(x) and G(x) are defined by

[ e ¢ dt , G(x) = $x) - xd(x) (2.56)

¢ ) = sz

2
\[3
Spitzer's times (2.54) for Tgg agree exactly with the times (2.50) and

(2.52) if we put m) « m,, and Chandrasekhar's times (2.56) for rﬂ agree

with the times (2.48), (2.49) and (2.53) on the same conditions, apart from
some insignificant numerical factors.

According to the above formulas the following relations exist between
the relaxation times of energy and momentum, 'raa and = in an elec-

tron-ion gas (nl = nz), @
m m m
™2 ™2 2
ST TR T PR LT T T
(2.57)
m, m
. c2, 41,42 = ¢, —2--i 1,
1 2 2 1 m m
1 1
and moreover
nn s Y2 s . (2.59)

The characteristic times for the establishment of equilibrium of mo-
mentum, i.e. isotropic velocity distribution, thus coincide with the times
for the establishment of equilibrium of energy as concerns the interactions
electrons +—» electrons, ions <« ions, and electrons - ions. But
with respect to interactions ions « electrons we see that the ions will
make the distribution of the electrons isotropic in a much shorter time than
they will need to equalize the temperatures. We must thus expect the elec-
trons to acquire an isotropic velocity distribution very rapidly. For the
ions, on the other hand, the two processes will develop with equal rapidity.

It might be interesting to make a comparison with the results obtained
when only taking the short-range collisions into account. Chapman and
Cowling give the following value for the collision time [4],

Wt
'rg - ap T (2.59)

where “ap is the reduced mass for two particles ¢ and p ,
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m._m

I
ag = -m—um% , while Oyg is a mean impact parameter.

For Oap We substitute the value that corresponds to a relative deflec-
tion w/2,

e, e
g .~ —2 P (2.60)
ap g . wl
af ap
(‘"ap is the relative velocity between the particles).
my i
If we take into account that By = — Boy = — and B2 = my,
(m; « m,), andthat mean values of Wep aTe
r‘(”) vy - EEY, o - 22yt (2.61)
22 m, ' 12 m, ' )
B
we get for Tac *
3 l/
9Ym, ¢ / 9Ym, o s
T}C = lz ! 12(: = : ’ (2.62)
4zel n, 4:ez n,
3
2 9Wm, & 5 1 M2 2
L 4 = , T | Jp 4
lc 2ﬁe§ e%nz 2¢ m, lc

The mutual proportions are thus the same as for long-range interactions
(2.57),

1,e2 ol o2 o 22, T2
Tlc.‘tzc.fzc. "lc = 1: —“-;;.—nq.l . (2.63)

But we immediately see that the deflection time for short-range collisions
is larger by a factor ~ 6A . According to Section 4,

3 \ 3
A= 1nD/q = In .:.(::Tn.) . (2.64)

The quantity A grows slowly with increasing temperature & (=kT), and
decreasing density n, and stays within the regions of temperature and
density pertinent to plasma physics of the order of magnitude ~ 20 [15]

The collision times for long-range interactiono thus are less than the
short-range collision times by a factor ~102. A grave error is therefore
committed by only taking short-range colliliona into account, as pointed out
by Cohen et al. [17]. This is, however, permissible in the case of gases
with low temperature and high density.
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14. INTERACTIONS WITH THE ENVIRONMENT

In Section 8 we showed that the force term <F, l‘a m> of the averaged
Liouville's equation (1.8) may be split into the following parts,

fF, ot fa % [ F ptpdride+ g J F g (fyg-fyfp Jar'do’ (2. 65)

The first part is the external macroscopic force field while the second part
is defined as the internal macroscopic force field,

F = % I’qﬁ fgdride’ . (2.66)

The electromagnetic field involved in (2.66) satisfies Maxwell's equations,
as shown in Section 3. Finally, the last part of (2.65) is due to the corre-
lations between the different kinds of particles and gives origin to the so-
called collision term.

The important thing about this result is that interactions between mole-
cular systems in the correlation region (where fap 'faf'ﬁ = %ap # 0) can-
not be represented by macroscopic force fields.

Part of the macroscopic field F  is due to the external field Fy, and
represents the effect of the environment on thé system. But recalling the
above statement, we cannot expect to be able to represent the total effect of
the environment by macroscopic fields, dependent on time and position.

Apart from this more indirect effect, we must also take into account
the possible occurrence of direct effects having the character of random
collisions between gas molecules and the molecules of the environment, the
mutual distance of which is less than a certain correlation length. The en-
vironment may consist of other gases, fluids or solid matter. Thus, in
general, a knowledge of the detailed microscopic structure both of the system
and the surroundings is absolutely necessary to give an exact description of
the d~velopment of the system by equation (1.62). This really means that we
extend the system to include part of the surroundings. :

This, however, we do not wish to do, and we must consequently here-
after neglect direct '"collisions' between system and environment and assume
that the total effect of the surroundings on the systemm may be represented by
external macroscopic force fields which depend on time and position::

l; o ° Fc o(r.t). This assumption is justified if the gas is sufficiently far

away from the environments or if the molecules at the surface of the gas are
in local statistical equilibrium with the molecules in the nearest environment.

If the environment is constituted by another (ionized) gas, we have seen
that eventually the collisjons will invariably lead to the attainment of the
equilibrium state. We must expect similar conditions when the surroundings
consist of solid matter or fluids. (The entropy of the system can admittedly
diminish because of interaction with the environment. This, however, is al-
ways accompanied by a corresponding increase in the entropy of the environ-
ment, so that the total change is positive.)
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15. EXTERNAL TIME -DEPENDENT MAGNETIC FIELD

Before leaving the study of the statistical properties of ionized gases,
we shall consider a state of affairs which at first appears paradoxical, but
which actually has a natural explanation.

We have seen that the only physical effect which contributes to the
change in entropy when the "entropy flow" (nac In !.) is zero, is the so-
¢ H

c «

called "entropy source density' The latter is always negative.

As a result of molecular interactions the entropy of a system will de-
crease towards a lower, stable value (Ha) while the state of the system,
represented by f,, will simultaneously approach statistical equilibrium,
i.e. tsotropic Maxwell-Boltzmann distribution.

Suppose that we have an external magnetic field in the gas, and that
there is present a time change of the field with such a short period t that
the collisions are unable to '"'smooth out'' the effect in less then the time

it 2x .. eB
T (7 « tr). On the condition T (w = r—n_c') the magnetic moment
i mci
of a particle, u = —5 is an adiabatic constant, and the transverse
particle energy will therefore change proportionally to B, while the longi-
tudinal one, % mczll , is of course unchanged. Analogous conditions exist

even when Z—:_ << 'rk is not satisfied.

It appears as if the system retreats from statistical equilibrium because
of the introduction of anisotropy. 1f, however, we have a look at the expres-

dH
sion for 3 t. , we find that there is no corresponding change in the entropy,
as the term n, -:—c + Fo Inf, (2.15), representing the contribution to
dH

_d't—a from external fields, disappears. The solution of this apparent para-

dox is immediately seen if we let the magnetic field revert to its original
value. Provided that the collisions have not had the time to cause disturb-
ance, we shall again have the original isotropic state. The process is re-
versible, at least as far as the system gas-magnetic field is concerned,

JH
and is consequently not accompanied by a change in entropy, ( LI 0)

¢t

A periodic change in the field with characteristic time equal to or
greater than the relaxation time for the gas (v 2 rr), however, will result
in decreasing entropy, as the collisions then have the time to smooth out
of the difference between the transverse and the longitudinal energy [18].

Ultimately then, only the :ollisions can lead to a change in entropy,
but any (reversible) deviation from the isotropic Maxwell dist ribution in
the state of the system will enable the collisions to increase the entropy
of the system further.
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Finally a word about the concept of '"collisions'. The '"collision term"
in Boltzmann's equation has been the source of much confusion, evidenced,
for instance, by the many forms of the term. This is the more strange
when one considers the fundamental importance of the so-called collisions
for the statistical development of the system.

This untenable situation is clarified, however, when we take our point
of departure in the exact Liouville equation and not in the Boltzmann equation
with a more or less arbitrary collision term.

16. THE EQUILIBRIUM CONFIGURATION FOR THE SYSTEM
16.1 DEDUCTION FROM MICROSCOPIC THEORY

Statistical equilibrium for a system is characterized by the fulfillment
of two requirements:

(1) Internal equilibrium for the system.
(2) Equilibrium between the system and the environment.

A macroscopic system always has an internal structure, and can conse-
quently be subdivided into component systems, i.e. molecules, groups of
molecules etc.

The requirements (1) and (2) are again valid for all macroscopic compo-
nent systems in statistical equilibrium. In this case, however, the environ-
ment with respect to a single given component system includes all other com-
ponent systems.

We must assume that all (component) systems have a natural tendency
toward statistical equilibrium because of the intermolecular interactions in
the system and with the environment. If we denote the negative entropy of
the (component) system by H, we can express the irreversible tendency
in the following manner,

o H . o H
(dt)syst.< 0, at ] env.

Both interactions within the systemn and with the surroundings will lead to
increasing entropy. The requirements (1) and (2) can now be expressed as

AN
o

(2.70)

ch
(1) <7t_)oyst. =0,

ch
@ ().

The relations (2.70-71) are only valid for macroscopfc component
systems. For microscopic or molecular systems the so-called "principle
of microscopic reversibility' is applicable, meaning that from a micro-
scopic point of view the development is invariant with respect to inversion
of time (t = -t). (Inthe case that we have an external magnetic field, its
direction must be reversed (B =+ -B).) The equations of motion of the
single molecules are symmetrical with respect to time.

(2.71)

]
o

In the preceding we have treated a composite gas partly as a system
and partly as being composed of independent component systems (gases).
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In the former case we defined the thermal velocities in relation to the mass
velocity @, for the whole gas (Cq = ©q - O, ), while in the latter case
the thermal velocities are more naturally defined in relation to the mean

velocities Cao (Ca‘ = 04 - cao) of the component gases. In this case we

further define average values and flux vectors of molecular quantities

for each component gas in the same way as done earlier for a simple gas.
We then get as many sets of such quantities as there are components in the
gas, and as many sets of macroscopic transport equations.

Under the first point of view the interactions between the component
gases will have the form of internal forces, the effects of which cancel when
the gas is viewed as a whole. Under the latter point of view the interactions
between one component gas and the other components will have the form of
forces between one component and the surroundings. The requirements (1)
and (2) will be satisfied in both cases if the conditions

¢ H ¢ H
a a
(__Ca_t_) 8= 0 (%_t_) . " 0 (2.72)

for all @ and P, are satisfied. The first condition means that the distri-
butions f, have the form (2.40),

2
m a/. N -a(c.-co) _
fq = £ - na(zﬁ—) e 23 . e=1,2, ...

(2.73)

The mean velocities %o and the temperatures &8, are the same for all
component gases, i.e. e, and & . The second condition is satisfied if

we disregard possible collision terms representing interaction with the en-
vironment in Boltzmann's equation. When we impose the stationary condi-

tion (-a%- = 0) this equation gets the form

dfc dfa
Cq - o + (Pg tcg x W) - o, =0, (2.74)
or, if we introduce the thermal velocity Cu =¢, - ©, and divide by fq
0ln f d01nf dlnf
L% scC, . ¢ -c -2 v —
e, = +C, = * (F, % 35 St € X “,] i, +
dln f d0ln f
+(C xw) . e . s : 9 =0 . )
(Cq X 1) d9C, d9C, Ca: 57 % =0 (2.75)

In contrast to earlier conventien F, does now not include the magne-

e B
ticforce ¢ x & , w. = -2
a Q @ = mgc

From this equation we can now derive the equilibrium conditions for the

macroscopic quantities Ng» €4, 3, Fq and .,
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dinf
In equation (2.75) we substitute the expressions obtained for P a
dln £

and —d-c—.- from equation (2.73), getting
«
/s *
dln n'a/.o dln na/a m_ ]
% e "0 | Ty (Fet %oX%an % greo)|
dln 3 m m
2 _ 9 ¢ ,2q  Ta dlnd _
+ [Cc*co +c.ca.d—r OO]T +C‘ca —"— or = 0.

(2.76)

This is an identity in C4, and the coefficients of the powers of the third,
second, first and zero degree must therefore be zero. This gives the equa-
tions (2.77), (2.78), (2.80) and (2.85).

We get, to start with,

2 dln & _ . dlne _ . .
Caca' T = 0 1.e. _-dr_ =0 1.€. &4 = Const. (2.77)
Further, using (2.77),
c c : __9__ c = 0 i.e. *(—d— (] + .£ (] ) = ¢ = 0. (2.78)
Ll dr © ir © dr O

The deformation tensor e is thus zero, and the gas consequently moves
in a screw motion like a rigid body,

¢, = U+ wxr, ulj|] w , (2.79)

where u and & are constants.
We further derive from equation (2.76)

. dlnn m
cc'[ C_aa(ra",cox._c._d_co)]:O,

ir a o Jr
or (2.80)
dlnn m
a _ a . 9
or = 2 (l'c+ cox.c- co -:‘7 co)

may be transformed

As e, has the form (2.79), the term e, 1‘? c,

into w x ¢ and equation (2.80) can be written

dlnn m

(lr‘I o : (Fgteo,xa), @ = W, t w. (2.81)

Now,

coxn=(.xr)xu=w2r-(--r)u =uer_ ' (2.82)
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where I, is the component of I normal to the axis of the screw motion
(2.79). We can therefore write o, x w as the gradient of a centrifugal
potential ¢,

d¢c

2.2
o, xw = - =<, b = -bur . (2.83)

Substitution in equation (2.81) shows that it must be possible to derive the
vector F + ¢ x w, from the potential ¢, .

a
a4
- a - &
Fot o xw, = ~——=+ §g° 'r—r'x_;mnﬂ'¢c' (2.84)
Therefore,
Mo
¥ (¢a+ ¢c)
n, = ngo€ , n o = const. (2.85)

The last relation obtained from equation (2.76),

dlnn oQa
co . __d—r—— =0 or 00 'Fa = -Oo : or =0, (2.86)

means that the force Fqg must everywhere be normal to the velocity °o , 80
that no work is done and the field is "force-free'. The velocity ¢, must
lie along an equi-potential surface Qa = Const.

In the case of a pure translational motion ¢_ = u , the potential is
thus cylindrical, §g = @q (r,®), with the cylinder axis (z-axis) along u,
while for a rotational motion ¢_ = @ xr the potential is rotationally sym-
metrical with w as the axis of rotation: ¢ = ¢, (r,z). If both m and

@ # 0, then ¢, is constant along helical trajectories with u (]| w) as the
axis.

e
The contribution to F, from an electric field B is g, = n'T.' E
a
If 6, denotes the rest of l"‘l (gravitational fields, etc.) we have,

Fq = €, + G . (2.87)

Provided that G, may be derived from a potential

9¢
@q = - ———,,:G , (2.88)

equation (2.84) gives

g t Cox W, = '4_1‘(01' ¢ch) ' (2.89)

meaning that the vector is vorticity-free, or, as



e, = a E and - : 1 “a B
a m, a ¢ m, !
we have
d 1 -
W X ( E + ry Oo X B ) =0 . (Z . 90)

But this condition means that the magnetic flux through a surface that follows
the motion of the gas will be constant during the motion [15] and the mag-
netic field will consequently be '"frozen into'' the gas when the latter is in
statistical equilibrium.

According to the above, the assumed tendency of the field to remain
frozen in [15] is a consequence of the natural tendency of the system to-
wards equilibrium (Section 12).

The equations (2.77), (2.79), (2.85) and (2.86) as well as the two addi-
tional conditions that the temperature and the mean velocity be the same for
all component gases a, express the characteristic conditions of a gas in
statistical equilibrium,

m
-5 4+ b.)

4 = Const ¢ = untexr, ng =n e
(2.91)
d¢a
%" 5 -9 Yo = 3. a0 ¥ %
The three first equations may be expressed on differential form
dln kg
= e = 0 , — = .
—3F o, T o, (2.92)
when is defined by
Ju Inn m
a _ e @ =
i P ? ('c+ ¢, xna). “a w e (2.93)

In an arbitrary state these three quantities constitute a measure of the devia-

tion from statistical equilibrium. In that case G, X @ must be replaced by
d

" Tr %o

It follows from the set (2.91) that J* = O (equation (1.47)), and the

current density is then equal to the convective flow Qe & - Maxwell's
equations therefore assume the form (3%- = 0),

2. = -9 . =

T E 4xq, , T B o,

(2.94)

d (] x

e X = , —— 2 —

Jir E 0 Jr xB [ Qe °o
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This set of equations, together with equations (2.80), (2.85) and (2.79),

1 _ dé _ my
E+Eo° XB - "3-!':, (¢"—e—a—¢a)p
(2.95)
B'co = 0, 6, * ute xr, Qe=:e¢na,

gives the field configurations that are characteristic of statistical equili-
brium. We must assume that the fields possess a natural tendency towards
this equilibrium configuration.

We have here assumed that the only forces are electric or magnetic
ones (Gg = 0).

. The solution of the equations (2.94) are, when disregarding border
effects,

= d . 0
E= - ¢, + E, . B= -“xA+ B, ,
(2.96)
q!d-‘l q'ol dT'
- e - 1 e o
belr) =/ [r=r] A= IE |l'-l"| '

Here B and B_ are the external fields that satisfy the homogeneous
Maxwell’ equations.

In the special case that ¢ = Const. = u we derive the following
relation for the internal fields (exclusive of E, and Bo) from equations
(2.9¢6),

B = Exe . (2.97)

(o]

O+

Non-relativistically, the internal magnetic field must therefore be zero,
and in this case the external magnetic field is frozen in the gas.

In the case of a rotating gas the conditions become more complex. The
relation (2.97), for instance, is no longer valid.

The above equilibrium conditions (2.91) and (2.92) are microscopically
founded and rest on the validity of the H-theorem. In classical thermodyna-
mics the equilibrium conditions are derived by macroscopic arguments that
have the character of postulates. It might be interesting to see how the
usual postulates must be modified to be consistent with the results of micro-
scopic theory.

16.2 COMPARISON WITH MACROSCOPIC THEORY

The thermodynamical expression for the entropy (per unit volume) for
an ideal gas (nD3 » 1) is [4].

s, = Kinn, + 31n ;08 . 3) (2.98)
a - " Mg Bg "z 23T -2/ '

while the enthalpy W, is given by
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5
w, = 3 Pa kT . (2.99)

The thermodynamic or Gibbs potential G, = W,

a - SqT is consequently
given by (¥ = kT).

= 3 Ta
G, = na'&(,lnna+'z'1n2‘,,+l)' (2.100)
Further, the chemical potential y.o is defined as thermodynamic potential
per molecule, «
o 3 Mg
= = + = . .
' Gg/ng = ¥inn, 5 In T 1) (2.101)

In the case that we have external and internal fields of force Fg that may be
derived from a potential m, ¢, the expression (2.101) must be replaced by

Hg = H9 + mgd, . (2.102)

The conditions that are usually assumed for thermodynamic equilibrium
are constant temperature, velocity and chemical potential,

3 = Const., c, = u, ua = Conast. (2.103)

These three conditions may be written on differential form,

dln & d
- _d— - “c = o
oT 0, IF c, 0, T , (2.104)
where
du dln n
a _ a
F - 3 _dr_ - mapc . (2.105)

These are the conditions assumed by for instance H. S. Green [8]. He
further assumes arbitrarily that the relation

(2.106)

is valid in equilibrium between the internal fields. Non-relativistically we
then have B = 0.

The conditions (2.103) or (2.104) and (2.106), which must be considered
as arbitrary macroscopic postulates, in the case of no rotation (e = 0 )
and no magnetic field ( = 0 ), then are quite equivalent with the three
first conditions (2.91) o:"(z.qz) which are founded on microscopic theory.
By the latter procedure we get in addition the three last of the conditions
(2.91), which cannot be macroscopically proved.

Consider the case that the body has a constant rotation w. If we then
add the centrifugal potential m g, ¢_ = -im, w?r? to the chemical po-
tential (2.102),
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. 2.2
g = u:+ma¢a-}mawr , (2.107)

and further require that the magnettc force ¢, Xw, can be derived from a
potential which may be included in ¢ , i.e.

_d.‘?Fx(coxB)=o (2.108)

(B is the sum of the internal and external fields), we obtain equilibrium
conditions that are quite equivalent with the conditions (2.91) or (2.92).
The three last conditions (2.91) must, however, be separately postulated,

c,-Fy=0, = 4, €0 = % - (2.109)

We have seen that the conditions (2.91) and (2.92) are sufficient to se-
cure that the entropy production is zero and that the state is stationary. We
shall therefore use these conditions as definitions of thermodynamic or sta-
tistical equilibrium. We must, however, be aware of the apparent absence
of a general agreement as to which equilibrium conditions are the correct
ones.

The first part of this section is essentially a generalization of the results

of Chapman and Cowling for simple gases without electromagnetic fields [4]
to the electromagnetic case for composite gases.



- 54 -

PART III. PAENOMENOLOGICAL THEORY OF
TRANSPORT PHENOMENA

17. TRANSPORT PHENOMENA

The denotation ""transport phenomenon' is applied to certain phenomena
occurring in a gas which is not in statistical equilibrium. We have seen
that any deviation from equilibrium will set off microscopic equalization
processes, which, in accordance with Le Chatelier's principle, seek to
counteract their cause and lead the system back to the equilibrium state.
The macroscopic counterpart of the microscopic equalization tendencies
are the so-called transport phenomena. The fact that a system is not in
statistical equilibrium can always be traced back to disturbing interaction
with the environment, with the result that the equilibrium conditions (2.91)
can no longer be satisfied. (We then disregard possible changes in the in-
ternal structure of the molecules.) These disturbances set up gradients
(possibly time variant) in temperature, velocity and density, that do not
agree with (2.92). For composite gases the equilibrium between the com-
ponent gases will moreover be destroyed. We thus get phenomena like dif-
fusion, electric current, transport of momentum and heat conduction.

The microscopic explanation of this is that the molecules, during their
disorganized thermal motion, will "transport' their molecular properties
(e.g. number, electric charge, momentum and energy) from place to place.
In statistical equilibrium this transport is completely random, so that the
microscopic mean values disappear. Deviation from equilibrium, on the
other hand, means that this is no longer the case.

Let ¢ = ¢(r, C,t) denote the molecular property as before. Then
nd = fna 6o = .z f’a‘«“a (3.1)

is the corresponding macroscopic property. The transport of this property
is given by the so-called flux vector

ndc = Ing®,C, =T/ 9C,1dC . (3.2)

which gives the flux of the property ¢ through a surface which follows the
mean motion of the gas.

17.1 DIFFUSION OR NUMBER TRANSPORT

If we assign to ¢ the molecular property "number'", i.e. ¢ = 1,
we get from (3.1),

n €, = feaf,dCq . (3.3)

This vector gives the number flux of molecules a in relation to the mean
motion of the gas. Another name for ¢4 is the "diffusion velocity'" of
the molecules a. If we have two component gases (a = 1 and 2), we
are usually interested in the relative diffusion velocity,
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~ 1 1 )
€,-¢, - Ay fe,fde, - ay Je 1,40, =
= °1 - cz = clo - czo = uo R (3.4)

which equals the difference between the mean motions of the two gases.

We have a special case when the molecules of the gases 1 and 2 are
identical. The vector T 5 - Cl then gives the ''self-diffusion" of the

molecules, i.e. the relative diffusion of two different groups of identical
molecules.

The diffusion is evidently zero when the gas is in statistical equilibrium
(Eq. (2.73)), naﬁa(o) = 0 . The symbol () denotes statistical equili-

brium.

17.2 ELECTRIC CHARGE TRANSPORT
The total electric current density is given by

3= Eneac‘l:(fnaea)coirﬁn

o 8 g (3.5)

and is the sum of the '"convection current'(( £ n e, ) co) and the other term
which gives the proper conduction current J * . The convection current is
zero when the gas is electrically neutral.

The flux vector for electric charge is obtained from equation (3.2) by
putting ‘P = e,

ne C =§ n.e C = Efeaca f,dC, . (3.6)

This is identical to the conduction current j* ,

J* = neC =2 nge,C, = EMY (3.7)

The contribution to this from the molecules a, i.e. § a* = ng eaCa,

thus is proportional to the diffusion vector n,T Q-

For a binary gas mixture we get from equation (3.7) and the relation
Zn_m 6 = 0 ’
e @ a’a
n,n,(m,e,-m,e,)
172V°271 172 - -
J* = Q (cl“cZ) . (3'8)

In this case the electric flux vector is proportional to the relative diffusion
velocity. If in a plasma we denote the electrons by index 1 and the ions by
index 2, i.e. ml/mz <« 1, equation (3.8) will give approximatively,

I* = nlel( El - Ez) . (3.9)
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The current density is zero in statistical equilibrium, (Eq. (2.73)),
J*(o) = 0.

17.3 TRANSPORT OF MOMENTUM

We have previously shown (Section 6) that the flux tensor for momentum,
or the stress tensor, is found by putting ¢ = mC in equation (3.2). We then
get,

P = nmCC = £ ngm,C.C = EP“ . (3.10)
The expression can be transformed by introducing the total velocity
Cq = ¢, % Cq

P = ZngmgcacCy + Qc cC . (3.11)

In statistical equilibrium, where the distribution is given by (2.73), we
easily find for p ,

P(o) =plI, p = ﬁ“a“’a = nd =nkT , (3.12)

as 3, = & . All shear forces disappear, and the stress tensor repre-

sents a purely hydrostatic pressure. According to equation (1.54) this can
also be expressed by the condition

g(O) = P(O) -p I = 0 . (3- 13)
17.4 HEAT TRANSPORT

We have earlier found that the energy flux vector is obtained by substi-
tution of & = E = 1 mC? in equation (3.2). The result is

2 2
q = nimc“C =£na%m.cacc =‘E!qc . (3.14)

The heat flow, as well as the diffusion, conduction current and shear forces,
disappear when f, is isotropic in the velocity C, . This is especially the

case for( I\;[axwell-Boltzmann distribution (2.73) in statistical equilibrium,
i.e. q\©0) = 0 .

18. THE TRANSPORT EQUATIONS

In Section 7 we derived the macroscopic transport equation for the quan-
tity ¢ where ¢ is a molecular property (equation (1.57)). Three moleculur
properties are of special interest. They are the so-called summational in-
variants

$=1, $ = mC, ¢=§mcz. (3. 15)
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that is to say molecular number, momentum and energy. The reason that
these three quantities are in a class by themselves is that the total amount
of these properties is conserved during collisions between molecules,

¢.d ¢ b 4 f
c c'a ca
n g =Lng —gp— =LJog —¢—dC, =0 . (3.16)
dcf
One may satisfy oneself that equation (3. 16) is correct, when “. is

Landau's collision term, by a direct computation which is given in the
Appendix. Equation (3.16) is also valid for the familiar two-particle col-
lision integral (1.26).

The quantities (3.15) are the only ones having this property. '
For a simple gas the transport equations take the form

dn -
(a) at— + n ‘r M co - 0 N

dco - 4

. + 2. =0 , )

(b) L erF o P (3.17)

du d d J

+ —_— + — - . + § — =0,

dt v ir o ar Q-2 -F+p Jr o =0

where U = ni mc? - .:.na is the average molecular energy, and p and

q are the stress tensor (3.10) and heat flow (3. 14), respectively. These
three equations thus express the conservation of molecular number, momen-
tum and energy in the gas.

For a gas with several components (a = 1,2, ...) we obtain similar
sets for the components,

dn ¢ 1
a d (] ~ - C =
(a.) —dt—+na-5;'c°+-°;-(n.c¢)-na T =0 ,
dq,C de
a Qa ~ 0 (') = (-] p- Jd -
®)  —F—*%Ca 5z Sty Pa m % (Fa -t )t % Gy 57 %=
- dcm.c“
a at '
(3.18)
dU d
« d
(c) —a— * Va :—,.'co"'-a-;"l."'cca'('c‘—mo-)*
2
qcfm.C.

. 9
tPeigr®  PeT9E

By adding the corresponding equations for all component gares and using
equation (3.16) and the relation 2 e 6. = 0 we derive,
«
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dq d )

@  F* 7 % =0
d"o d -

(b) Q-ai— + E - P -E QCFG =0 , (3‘19)
dU d | d 0

(C) a-t—— + U'a; co + ‘d—— q ": Qacu Fc + pu _d—r co a0

3
Here U = EU“ = Ena , P = E Py and Q=13 Qq are the average

molecular energy per unit volume, the stress tensor and the heat flow for the
whole gas, respectively.

In the case that only electric and magnetic force fields are present,

e
L E-a—(B+ clcaxli) , the equation (3.19) can be further transformed,
a
dq 9 . =
(8) ar"'Qa—; co = 0 N
de, 1 1, . 9
(b) Q—g— - Q(E+ s ¢ xB)-2 xBt L. p =0, (3.20)
au d d * 1 . 9 =
(c) 'd?+UTf-'co+“¢?'q'J'(B+E°OXB)+P"§;°O’°'
Here ¢, =Inge, = IQ,, and §* = Inge, Cu = £3% , the total

electric charge density and conduction current, are the sums of the partizl
contributions Q_ . and J"&

If we multiply equation (3.18b) by e a /m « and sum over all the foilow-
ing equation emerges,

dj*,'_ * d +° ea z en (E+l B
Tt g St Ty Pa om0 (BHexB)-
(3.21)

de 0.3

1 €a * o * d _ cYq

;z_cjaxn +qe—3t__+J 'Fco-i—_d_t_

Spitzer and others [15] have interpreted the latter equation as a genera-
lized Ohm's law. In so doing they have assumed that the collision contri-
bution is proportional to the current density j* wher. the state is not ap-
preciably different from the state of equilibrium, i.e.

ch: ea *
"t = Cmseel) e (3.22)

where 0 is the electric conductivity. In the case that we neglect time
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variations, quadratic terms in ¢, J* andtheir gradients, pressure
gradients and the term J x B, equation (3.21) reduces to the familiar
Ohm's law,

3* = d(E+—cl—c°xB) = oE* . (3.23)

The asterisks denote field quantities that refer to a coordinate system
moving with the velocity ¢ o

H.S. Green [8] has asserted that the assumption (3.22) is incorrect
except in the special case that all temperature gradients are zero, and has
proposed another generalization of Ohm's law. The situation is, however,
far from clarified, and we shall return to it in Section 19,

Equations (3.18) and the other equations in this section that are derived
from them, must be supplemented with Maxwell's electromagnetic equations
(Section 3) and other pertinent equations. But it is easily verified that these
equations do not constitute a complete, solvable set.

In the electromagnetic case the unknown quantities are, according to
(3.28), (a'= 1,2, ..., %),

- ¢ o S
Ra’ °o’Ua’E’B’"aca' Py 9% 355 % o ’Jt_ua

(3.24)

The number of scalar quantities thus is 18% + 9. But the number of equa-
tions to determine the unknowns, i.e. equations (3.28), Maxwell's equations
(Section 3), the relations (3.26) and the relation z Q, C = 0, as well as
the equation of state

3 1
o)y = Uy = 3 ma®a o P (P)yj = ngdq -

© 2 (3.24")

a total number of 6x + 15, are, for all =« 5 1, less than the number of
unknowns, and we need at least 12%x - 6 new equations for a complete,
solvable set of equations.

Equation (3.24') follows directly from the definitions of the respective
quantities. We can only expect it to give the real pressure for ideal gases.
For real gases there is an additional term arising from the interaction of
the parnclel [19] We have actually confined ourselves to consider ideal
gases, in imposing the assumption nD3 » 1 in Section 8.

It serves no purpose to derive new equations from the transport equa-
tion (1.57) by substituting for ¢ new molecular properties that depend on
higher powers of the velocity. This method breaks down because increas-
ingly higher moments of the distribution function and new collision contri-

dc ba .
butions n, —3T— 2are sucessively introduced into the set in numbers ex-

ceeding the number of new equations.
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19. THE PHENOMENOLOGICAL RELATIONS. OHM'S LAW

The transport phenomena arise when the gas recedes from statistical
equilibrium as a result of disturbing interaction with the environment. If
this interaction is of a transient nature, the transport phenomena will be
transient. They will die away after a time equal to the natural relaxation
time of the system T, . If the disturbances are constant (time independent).
a stationary state will be established different from the equilibrium state,
with transport phenomena that are independent of time. In general, condi-
tions will vary with time.

The disturbances may be represented by the deviations in the tempera-
ture, velocity field, density and force field from the conditions that are
characteristic of a gas in equilibrium (equations (2.91) and (2.92)). These
deviations are the following,

kg dln &
’ ) — a=1,2, ...), 3.25
- e ( ) o )
where (Section 16)
. dlnn m
a _ a a -
— = — - = (F, + e x8), B -w t+tw. (3.26)

Like the transport vectors, the above three quantities are all zero in the
state of equilibrium (characterized by Maxwellian distribution function), and
they are all small quantities for sufficiently small deviations from this state.
We shall hereafter use the denotation 'forces' for the quantities (3.25).

We must be able to express mathematically that the deviation from
equilibrium may be said to be the cause of transport phenomena, by re-
garding all transport vectors or ' fluxes' as functions of the "forces'. A
connection exists between the components of the '"fluxes' and 'forces'.
The reason for this is obviously that the deviation in the distribution func-
tion from the equilibrium distribution is a function of the forces.

We may circumvent the difficulties mentioned in the preceding section
and obtain a complete set of macroscopic equations by limiting ourselves
to states that are sufficiently close to equilibrium, so that we may assume
the validity of a linear theory. We require that the variation in all macro-
scopic quantities over distances of the order of magnitude of the correla-
tion length D be infinitesimal [8] . The distribution functions of the first
or higher orders will then depend linearly on the forces (3.25).

If we write for fa ,

fg = £9) 4 f(al), f(al) . fff) 9a“) , (3.27)

where f&o) is the equilibrium distribution (2.73), we must have

(1) _ din 3 ) . dp
', Ay et Bgie +IDgg —&dr . (3.28)

We require that f(al) must not contribute to the density, temperature

and mean velocity, so that the macroscopic parameters ng, 35 and ¢,

contained in f SIO) are the real density, temperature and velocity.
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The vectors A and D and the tensor B are functions of the velocity
C . and the magnetic field B . They can be determined by substitution of
(3.27) in Boltzmann's equation as described by Chapman and Cowling [4],
when their form is known. We shall find the latter in Section 21.

In a similar way we must expect that the next approximation to f a’

i.e. f(az), will depend linearly on terms that are quadratic in the forces
and their gradients.

It follows immediately from (3.28) that the following ''phenomenologi-
cal relations'' must be valid,

5. = ', 9lnd . 9
(2) %Ce = - 3, T 5“«3 _o't:iL '
[0}
(b) P, © -2p, e, (3.29)
_ . Oln ¥ . ' d
(c) q, = - M, e ‘g"‘aﬂ P

The diffusion coefficient tensors ﬂ; and A,g are both of the second
order, and consequently have 32 = 9 components. The same is the case
for the heat conduction coefficient tensors mgy and )u; . The viscosity
coefficient tensor 4, is of the fourth order, and consequently has 34=8]
components.

The transport vectors qaca and q, of course only depend on the

veotors —%i— and —ddﬂg— ,» while the tensor 18 can only depend on the

tensor ® . The reason for this is that the '"cause' and "effect' must have
the same symmetrical properties (Curie's theorem).

From equation (3.29) and the relation j: = e, n,C_ it follows more-

over that «ae
J*:-_e_"_»,' _‘_1_“_"_-213. . Sup (3.30)
« mgy [ ir ] mg, ap ér ' )

The relations (3.29) give us 12 x new scalar equations for the macrosco-
pic quantities (3.23) in addition to the ones we already have, and this is
sufficient to complete the set of equations. (The number of sufficient
equations was 12 % - 6).

By summing (3.29) over all a we get the relations

(a) E l\'a = 0 ’ 5 “&B =Q ,
() P=-2p;:e, (3.31)
= .. 3103 ', 9uB
(c) . ™ ir ;”ﬁ Jir '
where now
B = iwa, m = Ema and ™g = f"ﬁ (3.32)



- 62 -

are the new coefficient tensors.

In the same manner we derive from (3.30), (.‘I* =z j"; ),
* ' dln ¥ aup
= -@© - o, - ’ 3.33
] or g B Jr ( )

where the conductivity tensors @' and Up are defined by

' e ' e
= .2 A , g _ = £ . .
o =zt A 5= I me By (3.34)

Equation (3.33) is the generalized Ohm's law.

In the special case that the gas does not rotate (39? 6, = ©), and

we only have electric and magnetic forces, equation (3.33) becomes identi-
cal to the generalized law already proposed by Green [8], apart from the
conductivity in the latter law being a scalar.

The condition is that we assume the value (2.102) for the chemical po-
tential, meaning that the gas is assumed to be ideal. This corresponds to
the assumption made in Section 8 that the kinetic particle energy is much

larger than the interaction energy nD3 > 1. This assumption is highly

justified in the regions of temperature and density pertinent to plasma
physics. It corresponds to neglecting the correction term Al"u (Section 9)

which is identical to the so-called virial term. This is only noticable for
real gases.

There is, however, a slight difference between our Ohm's law (3. 33)
and Green's law. Instead of the magnetic force co x B contained in
23‘-‘?1 (3.26), Green assumes the force Cro X B . He asserts that the Hall
flow is proportional to the latter quantity, not with the former. But when
assuming with Green that B = 0 in the equilibrium state, the difference
between the quantity e, x B and Cao X B will be a second-order quanti-

ty because of the equilibrium condition Co = % (2.91). This quantity
must be neglected in a first-order theory.

As regards Green's criticism of Spitzer's assumption (3.22), we note
that the equation which Green identifies with Spitzer's equation (3.21) is
valid for real gases, while Spitzer implicitly appears to have assumed that
the gas is ideal, in that his puint of departure is Boltzmann's equation
(without correcting virial term). When comparing the two equations it is
therefore necessary to confine oneself to ideal gases, especially because
Green's argumentation against the assumption (3.22) is based on Chapman
and Cowling's results, which are only valid for ideal gases.

For an ideal gas, where the collision term disappears in the equili-
brium state, and thus also the collision contribution (3.22), it is evidently
correct to develop this as a linear combination of the "forces" (3.25) when
the state is sufficiently close to equilibrium. This is of course also the
case for j* (equation (3.33)), and the collision term (3.22) may conse-
quently in general be written as a linear combination of j* and terms in-
volving the gradients of temperature and chemical potential. Only in the
special case that these terms disappear can Spitzer's assumption (3.22) be
correct, and only provided that the conduotivity te a tensor.
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A possible criticism must therefore also be directed against the fact
that Spitzer assumes that the conductivity is a scalar. It is another matter
whether there is really conformance between the actual values of the compo-
nents of this tensor and the components of the real conductivity tensor in
(3.33). This cannot be established before the coefficient tensors in the
phenomenological relations have been evaluated by direct solution of Boltz-
mann's equation.

If equation (3.21) is really the generalized Ohm's law in the first ap-
proximation, and the assumption (3.22) is correct, we must, if we substitute
(3.22) in (3.21), to a first approximation get an equation which is equivalent
with (3.33). The result course depends on the equilibrium conditions assu-
med, as they determine which ''forces' we are to choose.

With the assumption of his special equilibrium conditions (and wrong
Hall current), Green believes to be able to establish that for a binary gas
equation (3.21) cannot be identical with Ohm's law (3.33) except in the

dln T

special case that the temperatures gradient is zero.

The case is by no means clarified, however, and a closer investigation
is necessary.

20. SYMMETRY PROPERTIES OF THE MEDIUM

When we are to determine the form of the coefficient tensors A, B,
D; m, N, w, inthe preceding section, we must take certain assump-
tions about the symmetry properties of the gas.

Position-dependent force fields will have no influence on the symmetry
properties, and will only be able to make the medium inhomogeneous. This
is the case for all electric fields, gravitational fields, etc. As concerns
the only velocity -dependent force entering into our treatment, the Lorentz

e .
force é— ;na_ (cq xB) , the circumstances are different. The magnetic field
«

B stresses a direction in the gas, and all molecules describe helical trajec-
tories with this direction as an axis. The magnetic field thus introduces a
systematic molecular anisotropy, which was not present in the absence of
the field. As long as the gyration radius is sufficiently small, we must
therefore assume that the ionized gas has the same symmetry properties

as an anisotropic medium with rotational symmetry about an axis. When
the magnetic field decreases the medium will become gradually isotropic.

We shall investigate the consequences of this assumption for the form
of the coefficient tensor in the phenomenological relations in the preceding
section. During this investigation we shall need some results that will be
deduced from the theory of Cartesian tensors. (Those not interested in the
details of the derivation may pass on at once to Section 22, just accepting
the validity of the results of Section 21).
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21. CARTESIAN TENSORS

A Cartesian tensor Tr r r of the p-th order is defined in a 3-
l z «. o0 p
dimensional Euclidean space as a set of 3P quantities (numbers, coordinate
functions, etc.) that by an orthogonal transformation of coordinates,

A b, , ik = ik Iaik‘ = +1 , (3.35)
is transformed in accordance with the rule
T"'i

= a, _a ce. A, T (3.36)
liZ ip iyry izr2 ‘prp T Ty .- rp

Summation is everywhere performed from 1 to 3 over indices that occur
twice in the same term. The old and the new coordinates are denoted by
the vectors x; and x* . A vector is a tensor of the l-st order, and a
scalar is a tensor of the 0-th order. The transform of a quantity is deno-
ted by an asterisk.

An orthogonal transformation (3.35) is always composed of a pure
translation (b; = Const.) and a pure rotation (aikxk’ a, = Const. ) of the

coordinate system. Rotation through an angle ¢ about an axis with direc-
tion vector 1. can, according to Spain [20], be represented by the trans-

formation matrix,

a, = cos ¢ b5, + (1-cos t)lilk+ sin*cijklj . (3.37)

Here €55 = €31, = €53) = + 1, €35) = €53 = €5, = -1, and

all the other Cijk = 0. It can be shown that 6ik and ‘i.jk are tensors
og the second and third order. If the angle of rotation ¢ is infi .itesimal,
¢ =8¢ , the relation (3.37) turns into

As the inner product of the two tensors is a new tensor, then . and sik

must also be tensors, according to (3.37) and (3.38).

21.1 TRANSFORMATION OF LINEAR TENSOR RELATIONS

Suppose that a linear, homogeneous relation exists between the Carte-
sian tensor T_ and another tensor U (of the order q),

l...l‘p ll...!q

T = % U , (3.39)
rl...r rl"'rp"l""q 'l""q

where T, % and U are functions of the coordinates x; and the time t.

According to the quotient theorem for tensors, the 3P*e coefficients
are components of a tensor of the order p+q. (The quotient theorem
states that a set of 3T quantities are components of a tensor of the order
r if the inner product of these quantities with a tensor with arbitrary com-
ponents is also a tengor.) The transformation rule for the coefficient ten-
sor is therefore



n* a, -a, .. .a, X

. . . = a
11"'ip’Jl"'Jq ilrl 1prp J1%, j. 8 Tpee T ) 8,...8

(3.40)

The dependence (3.39) must therefore also exist between the transformed
quantities. The relation (3.39) is tnveriant with respect to coordinate
transformations,

For certain transformations ag dependent on the symmetry pro-

perties of the medium, the tensor L s will be transformed into
1°7° %

itself. If the medium, for instance, is isotropic, this will be the case for
all rotations of the coordinate system; if the medium is rotationally sym-
metrical, for all rotations about the axis of symmetry, etc. For a homo-
geneous medium all coefficients LI s will be constant (invariance

) l “ .. q
with respect to a pure translation of the coordinate system).

If we know the symmetry properties of the medium, we thus know the
transformation tensors a, for which the relation

o . o= ou o . (3.41)
il...ep,Jl...Jq il"'lp'-’l”"q
is satisfied. Together, expressions (3.40) and (3.41) then give a certain

number, namely 3P *q S, of equations to determine the quantities
X, The quantity S is the number of transformations for which
1 )

(3.41) is satisfied. Only a certain number of these equations will be in-

dependent of each other, so that we cannot expect to be able to determine

all the 3P*9 coefficients completely. What we can determine by this pro-
cedure is the form of the coefficient tensor which corresponds to the sym-
metry properties of the medium.

We shall now carry out this line of reasoning in detail for the tensor
relations

U (3.42)

Ty = *eUp Tij""'ijr- rs

i ir°r

under the assumption of a rotationally symmetrical medium. The quanti-
ties Tij and U" are both assumed to be symmetrical.

For simplicity we place the x, -axis of our coordinate system along
the axis of symmetry. The requirement of rotational symmetry then
means that the relation (3.41) must be satisfied for arbitrary rotations
of the coordinate system about the x3-axis. As this axis has the direction
vector li = 8i3' the transformation tensor must, according to (3.37),

in this case have the form

a, = cos 98, +(l-cose) 838, 3 +ein ¢ ey (3.43)

or, on matrix form,
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cos ¢ -sin ¢ 0
(8] = sin ¢ cos ¢ 0 (3.44)
0 0 1

The requirement of invariance (3.41) for LT f is satisfied for arbi-
1 g
trary rotations ¢ about the x,-axis if it is satisfied for the three rota-

tions ¢ = %, ®= x/2 and ¥ = 8¢ with the transformation matrices,

-1 0 o0 0 -1 0 1 -8 O
0o -1 ol , {1 o ol , |8¢ 1 o . (3.45)
0 0 1 o o0 1 o o0 1

21.2 THE RELATION 'I‘i = “irUr
The coefficient tensor 'ik has the matrix

11 *12 *13
[*gd = *21 %22 *23 (3.46)
*31 32 *33
In this case the invariance requirement (3.41) gives
'*ij LT T e LTI (‘irajs' 8, 6js)u" = 0. (3.47)

In this equation we successively substitute the three sets (3.45) for (aik)
and find the corresponding conditions for the components x_ .

The requirement of invariance with respect to the rotation ¢ = g

gives the conditions Xyz T Mzp = Myy = Uy, = 0, so that ['ik] re-
duces to

11 *12 0
[(*ik] = | %2 *22 0 (3.48)
i 0 0 u33

The requirements of invariance with respect to the rotation ¢ = z/2
further gives the new conditions L S T U T I T and ["ik]

is further reduced to
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_‘l ) T
1 12 0
(ad = |-%12 1 0 (3.49)
| 0 0 %33 ]

The requirement of invariance with respect to the rotation ¢ = §¢ means
that equation (3.47) is satisfied with A = 85 S Sy = 89¢c. ., -

We have, in other words, the rclation

(bu,SJ' + BJ‘S“) = 0 (3.50)
when quadratic terms in S are neglected. These equations, however,
give no new conditions, am}k (3.49) thus is the most general rotationally
symmetric tensor of the second order.

If we so wish, we can write the relation T, = on the familiar
vector -dyadic formas T = - U, = ® % %k wrhere e, denotes the

unit vectors in the three directions of the axes. If we use (3. 49) the ex-
pression for T can be transformed to

T= %,0; + %,(U x e3)+ %0, = .0 , (3.51)

where U.L= U,e, + v, e, and U" = U3 e, are the components of the

vector U normal to and parallel with the axis of symmetry (03).

Finally we shall only note that the most general tsotropio tensor of
the second order has the form

" 0 0
" = u&ik, [uik] 0 % 0 . (3.52)
0 0 )

This can be easily verified by requiring invariance even for arbitrary rota-
tions about the x,- and X, -axes.

21.3 THE RELATION Tij = “ijrsurl

In this case the coefficient tensor has 34 = 81 components, which may
be arranged on matrix form according to the following convention,
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%5111 Mu22 Maas %1123 *1131 *1112 %3382 %118 M121 |

®g211 2222 Mp233  Mg223 Moo o212 M2232 Mooy Mo2on
%3311 ™3s2z asss  ®asos ®asay Masmz  ™asse ®ssns *ason
n

%2311 *2322’ ®2333 2323 %2331 %2312 2332 %2313 *2321

["ukl] | ®su1 sz Msiss  “aios Mam ¥suz  Mawsz Maue Mmam | (3-53)

%011 1222 *1233 %1223 *1231 ®1212 M1232 *i213 Ma221
%9211 a2z 3233 ™azes 3231 Mam2  Mazsz “s213 *soo1
) %

%1811 ®1322 ™33z ™1s23 ™1331 *1312 1332 *1313 %1321

__"2111 %0122 M2133 %2123 Mo131 Memz *2132 %2113 Mo

If we now write Tij and Uij as column matrices [Tij] and [Uij] where

the components are arranged above each other according to the following
convention,

(T11 T2 Tys  Ta3 T3 Tiz T3 Ty3 Ty) (3.54)
::d !::tx;x;:n;:'x::i:sly for Uij , the relation Tij = % ijrs U" can be written
['rij] = [nij"] - (o] - (3.55)
Because of the symmetry properties
Ty = Ty o Uy = Uy (3.56)

only 36 of the 81 coefficients Biig are really independent. It follows from
(3.56) that )

uijrlurn = 'jir-Urc = 'ijsrurs = “ji-rUr- ! (3.57)

and as the components U rs M2Y be arbitrarily chosen, we must have that

“ijrl = 'ijlr = 'jin = "jilr ' (3.58)

Thus “ijrl is symmetrical with respect to the indices i and j , and the
indices r and .

The independent coefficients are the 6 x6 = 36 in the upper left-hand
corner of (3.53). The coefficients %3231 %2313 %1513 are, for instance,
all equal to %5331 We note that if U" is anti-symmetrical, then also

'iju is anti-symmetrical in the indices r and s,
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“ijrs = Mjirs = ““ijer = " “jier (3.59)
Instead of writing the whole matrix (3.53) we will henceforth only write
down the 36 independent elements in the upper left-hand corner.

The invariance requirement now gives us

"*ijkl = a‘irajsa‘ktalu“rstu “ijkl !

or

-8, 4.8 (3.60)

ir "js ktslu)' =0

(airajsaktalu rstu
We again substitute successively the three transformations matrices
(3.45) representing the rotations about the xs-axis. and obtain correspond-
ing conditions for the coefficients ijk1 -

The requirement of invariance for the rotation ¢ = x gives the condi-
tion
% = 0 when index 3 occurs an
ijkl ~ uneven number of times.

(3.61)

This means that the 6 X 6 - matrix for the independent quantities %, 8et
the following reduced form, )

» o
*111 122~ 1133 0 0 1112
*2211 %2222 %2233 0 0 %2212
*3311 *3322 *3333 0 0 ®3312
. .~ (3.62)
0 0 0 2323 2331 0
0 0 0 %3123 *3131 0
| M2 Mizzz Mass 0 0 *1212 |

The number of independent coefficients is thus reduced from 36 to 20.

The requirement of invariance with respect to the rotation ¢ = x/2

further gives

%1211

%3312

Y1111 =

~%2122°

0

%2222°

%1233

%2323

®*1122 %2211’ *1133 *

%331)

=0, %2 T -%22)
%1313 *3123 © " %3213
%2233

=%3322 ¢

(3.63)

The number of 20 independent coefficients further reduces to 10, and

(3.62) gets the form



- i
*1111 12z ™Mss3 0 © ¥
1122 *1111 *1133 0 0 =*112
%3311 %3311 %3333 0 0 0
(3.64)
0 0 0 *2323 2331 O
0 0 0 %2331 %2323 O
1211 “Mizn 0 0 0 “1212J
The invariance requirement for the rotation ¢ = §¢ with the trans-
formation tensor a, = 61k + Bk’ Bk T 6aci3k gives
8ir *rikl T %js™iskl T Okt ®ijt1 * B1uijku * O (3.65)
which leads to the relations
1211 T Mz M212 (Y0000 *nz2) - (3.66)

The final form of the rotational symmetric coefficient matrix thus becomes

(% M2z *1s 0 0 "112 il
1122 "1 *n3s 0 0 12
0 0 0 2323 233 0
0 0 0 -%2331 %2323 0
M2 *112 0 0 0 T(0yy - 'llzz?J

where only 8 of the coefficients are independent.

For the sake of comparison we shall also give the result for an {so-
troptio medium (invariance with respect to rotation about all three coordi-
nate axes):

“ijkl = '1°ij°k1 + "zaik°j1 + 136i16jk , (3.68)
or on matrix form,
(% 4% +n » L] 0 0 0 ?
1ttt 1 1
”l ul+uz+u3 “l 0 0 0
ul 'l ul+n2+x3 0 0 0 .
(3.69)
0 0 0 ! 0 0
2
0 0 0 0 '2 0
i 0 0 0 0 0 an
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This is the most general isotropic tensor of the fourth order, which thus
has three independent coefficients.

22. PHENOMENOLOGICAL RELATIONS FOR ROTATIONALLY
SYMMETRIC MEDIUM

In the following we shall assume without further verification that the
vectors and tensors we have worked with in the preceding sections are real-
ly Cartesian tensors, i.e. they are transformed in accordance with (3.36).
We further assume the symmetry properties of the medium adopted in Sec-
tion 20, and that all tensors we have to do with are rotationally symmetri-
cal (or, in the non-magnetic case, isotropic). '

Let us first consider the correction (3.28) to the distribution function.
We suppose that the vectors A and D are linear functions of the thermal
velocity €, and that the tensor B is a linear function of the symmetric

and non-divergent tensor c°c =c¢cc -;- Cz K, i.e. that

A=a(C)C, B=g(C):¢€°%, D= g(c)-C , (3.70)

(@, p and y are isotropic tensors for an isotropic medium (B = 0)). As
the two second-order tensors @ and y and the fourth-order tensor @ are
rotationally eymmetrical, and the former two consequently have the form
(3.49), while {8 has the form (3.67), we have, according to equation (3.51),
that A and D are linear combinations of the vectors

€, € xe ¢C (3.71)

(uo is the unit vector in the direction of the magnetic field), or, which is
equivalent, of the vectors

c C x e° (Cx w° xu® . (3.72)

A closer investigation, the details of which we shall omit here, shows that
when (8 has the form (3.67), then B can be written as a linear combina-
tion of the six independent, symmetric and non-divergent tensors formed by
combination of the vectors (3.71) or (3.72).

If the vectors (3.72) are denoted by §,, &, and E;, respectively, the
six tensors involved are given by the expressions

{m_n :l ), «f = 1.2.3 . (3.73)
a P p e
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